IoTwins: Design and Implementation of a Platform for the Management of Digital Twins in Industrial Scenarios

被引:18
作者
Borghesi, Andrea [1 ]
Di Modica, Giuseppe [1 ]
Bellavista, Paolo [1 ]
Gowtham, Varun [2 ]
Willner, Alexander [2 ]
Nehls, Daniel [2 ]
Kintzler, Florian [3 ]
Cejka, Stephan [3 ]
Tisbeni, Simone Rossi [4 ]
Costantini, Alessandro [4 ]
Galletti, Matteo [4 ]
Antonacci, Marica [5 ]
Ahouangonou, Jean Christian [6 ]
机构
[1] Univ Bologna, DISI, Bologna, Italy
[2] TU Berlin, Fraunhofer FOKUS, Berlin, Germany
[3] Siemens AG Austria, Vienna, Austria
[4] Ist Nazl Fis Nucl, CNAF, Bologna, Italy
[5] Ist Nazl Fis Nucl, Bari, Italy
[6] ESI GRP, Rungis, France
来源
21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021) | 2021年
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/CCGrid51090.2021.00075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increase of the volume of data produced by IoT devices, there is a growing demand of applications capable of elaborating data anywhere along the IoT-to-Cloud path (Edge/Fog). In industrial environments, strict real-time constraints require computation to run as close to the data origin as possible (e.g., IoT Gateway or Edge nodes), whilst batch-wise tasks such as Big Data analytics and Machine Learning model training are advised to run on the Cloud, where computing resources are abundant. The H2020 IoTwins project leverages the digital twin concept to implement virtual representation of physical assets (e.g., machine parts, machines, production/control processes) and deliver a software platform that will help enterprises, and in particular SMEs, to build highly innovative, AI-based services that exploit the potential of IoT/Edge/Cloud computing paradigms. In this paper, we discuss the design principles of the IoTwins reference architecture, delving into technical details of its components and offered functionalities, and propose an exemplary software implementation.
引用
收藏
页码:625 / 633
页数:9
相关论文
共 15 条
[1]  
Cejka Stephan, 2019, 2 WORKSH CYB PHYS SY
[2]   Edge Computing in IoT-Based Manufacturing [J].
Chen, Baotong ;
Wan, Jiafu ;
Celesti, Antonio ;
Li, Di ;
Abbas, Haider ;
Zhang, Qin .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (09) :103-109
[3]   Industrial Edge Computing Enabling Embedded Intelligence [J].
Dai, Wenbin ;
Nishi, Hiroaki ;
Vyatkin, Valeriy ;
Huang, Victor ;
Shi, Yang ;
Guan, Xinping .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2019, 13 (04) :48-56
[4]  
Halenar Igor, 2019, 2019 20 INT CARP CON
[5]  
Jaensch Florian, 2018, 2018 25 INT C MECH M
[6]  
Khan Abid, 2020, IEEE T IND INFORM, P1
[7]  
Kintzler F, 2018, 2018 GLOBAL INTERNET OF THINGS SUMMIT (GIOTS), P215
[8]  
Landolfi Giuseppe, 2018, 2018 IEEE IND CYB PH
[9]  
OASIS, 2020, TOSCA Simple Profile in YAML Version 1.3
[10]  
Perzylo Alexander, 2019, 2019 24 IEEE INT C E