A Note on Extremality of the First Degree-Based Entropy

被引:1
作者
Yang, Yuhong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
GRAPH ENTROPY;
D O I
10.46793/match.87-1.125Y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a connected graph of order n with degree sequence D(G) = [d(1), d(2),..., d(n)]. The first degree-based entropy of G is defined as I-1(G) = ln(Sigma(n)(i=1)di) - 1/Sigma(n)(i=1) di Sigma(n)(i=1) (d(i) ln d(i)). In this paper, we characterize the corresponding extremal graphs which attain the maximum value of I-1(G) among all k-cyclic graphs of order n, where k >= 1.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 13 条
[1]  
Bollobás B, 2004, ELECTRON J COMB, V11
[2]   Degree Powers in Graphs: The Erdos-Stone Theorem [J].
Bollobas, Bela ;
Nikiforov, Vladimir .
COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2) :89-105
[3]   Extremality of degree-based graph entropies [J].
Cao, Shujuan ;
Dehmer, Matthias ;
Shi, Yongtang .
INFORMATION SCIENCES, 2014, 278 :22-33
[4]   A Note on Distance-based Graph Entropies [J].
Chen, Zengqiang ;
Dehmer, Matthias ;
Shi, Yongtang .
ENTROPY, 2014, 16 (10) :5416-5427
[5]   Information processing in complex networks: Graph entropy and information functionals [J].
Dehmer, Matthias .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) :82-94
[6]   A history of graph entropy measures [J].
Dehmer, Matthias ;
Mowshowitz, Abbe .
INFORMATION SCIENCES, 2011, 181 (01) :57-78
[7]  
Eliasi M, 2018, MATCH-COMMUN MATH CO, V79, P645
[8]   First degree-based entropy of graphs [J].
Ghalavand, A. ;
Eliasi, M. ;
Ashrafi, A. R. .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) :37-46
[9]   ENTROPY AND COMPLEXITY OF GRAPHS .I. AN INDEX OF RELATIVE COMPLEXITY OF A GRAPH [J].
MOWSHOWITZ, A .
BULLETIN OF MATHEMATICAL BIOPHYSICS, 1968, 30 (01) :175-+
[10]  
RASHEVSKY N., 1955, BULL MATH BIOPHYS, V17, P229, DOI 10.1007/BF02477860