ON ALGEBRAIC POINTS OF FIXED DEGREE AND BOUNDED HEIGHT

被引:1
作者
Denis, Koleda, V [1 ]
机构
[1] Natl Acad Sci Belarus, Inst Math, 11 Surganov Str, Minsk 220072, BELARUS
来源
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI | 2021年 / 65卷 / 05期
关键词
algebraic numbers; algebraic points; distribution of algebraic numbers; n-point correlation function; Diophantine approximation; NUMBERS;
D O I
10.29235/1561-8323-2021-65-5-519-525
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the spatial distribution of points, whose coordinates are conjugate algebraic numbers of fixed degree and bounded height. In the article the main result of a recent joint work by the author and F. Gotze, and D. N. Zaporozhets is extended to the case of arbitrary height functions. We prove an asymptotic formula for the number of such algebraic points lying in a given spatial region. We obtain an explicit expression for the density function of algebraic points under an arbitrary height function.
引用
收藏
页码:519 / 525
页数:7
相关论文
共 11 条
[1]   Counting algebraic integers of fixed degree and bounded height [J].
Barroero, Fabrizio .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :25-41
[2]  
Bernik V., 2017, J MATH SCI, V224, P176
[3]   LOWER BOUNDS FOR THE NUMBER OF VECTORS WITH ALGEBRAIC COORDINATES NEAR SMOOTH SURFACES [J].
Budarina, Nataliya, V ;
Dickinson, Detta ;
Bernik, Vasiliy L. .
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (01) :7-12
[4]  
Chern SJ, 2001, J REINE ANGEW MATH, V540, P1
[5]   ALGEBRAIC NUMBERS WITH BOUNDED DEGREE AND WEIL HEIGHT [J].
Dubickas, Arturas .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 98 (02) :212-220
[6]   Joint distribution of conjugate algebraic numbers: A random polynomial approach [J].
Goetze, Friedrich ;
Koleda, Denis ;
Zaporozhets, Dmitry .
ADVANCES IN MATHEMATICS, 2020, 359
[7]   Slicing the stars: counting algebraic numbers, integers, and units by degree and height [J].
Grizzard, Robert ;
Gunther, Joseph .
ALGEBRA & NUMBER THEORY, 2017, 11 (06) :1385-1436
[8]  
Masser D., 2008, COUNTING ALGEBRAIC N
[9]   Counting algebraic numbers with large height II [J].
Masser, David ;
Vaaler, Jeffrey D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (01) :427-445
[10]   Local Universality of Zeroes of Random Polynomials [J].
Tao, Terence ;
Van Vu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) :5053-5139