Biosilicification Templated by Amphiphilic Block Copolypeptide Assemblies

被引:25
|
作者
Xia, Lin [1 ]
Liu, Yu [1 ]
Li, Zhibo [1 ]
机构
[1] Chinese Acad Sci, BNLMS, Inst Chem, Beijing 100190, Peoples R China
关键词
amphiphiles; biomimetics; biomineralization; diblock copolymers; morphology; self-assembly; BIOMIMETIC SILICA FORMATION; SECONDARY STRUCTURE; IN-VITRO; HYDROGELS; BIOMINERALIZATION; NANOPARTICLES; NANOSPHERES; ARCHITECTURES; POLYAMINES; SCAFFOLDS;
D O I
10.1002/mabi.201000297
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An amphiphilic poly(L-lysine.HBr)-block-poly(L-leucine) (KL) diblock copolypeptide and its supramolecular assembly are used as a template to direct silica formation, which proceeds by a cooperative process involving biomimetic mineralization and copolypetide reassembly under ambient conditions. Various silica structures can be obtained by using different counterions, changing the chain length of the KL diblocks, and applying a sol-gel mineralization method. We find that the chain length of the KL diblock is an important factor in terms of controlling biosilica morphologies. We also find that the nature of the counterions strongly affects the resulting silica structures. For the same KL diblock, variation of anions from phosphate to sulfate and to carbonate can produce hexagonal silica platelets, silica rods, and fused silica platelets, respectively. In contrast, application of a sol-gel method can replicate the copolypeptide fibril network morphology in water, while employment of ultrasonication to the sol-gel medium transforms the silica fibrils to rigid silica rods. The resulting silica morphology has been systematically characterized using SEM and TEM, and the polypeptide conformation is explored using FT-IR and CD spectroscopy.
引用
收藏
页码:1566 / 1575
页数:10
相关论文
共 50 条
  • [41] DNA templated nano-assemblies.
    Sroga, GE
    Dordick, JS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U471 - U471
  • [42] Semiconducting superlattices templated by molecular assemblies
    Braun, PV
    Osenar, P
    Stupp, SI
    NATURE, 1996, 380 (6572) : 325 - 328
  • [43] Molecular orientation control in Amphiphilic α-helical copolypeptide monolayer at air/water interface
    Yokoi, H
    Kinoshita, T
    CHEMISTRY LETTERS, 2004, 33 (04) : 426 - 427
  • [44] Self-Sorting Microscale Compartmentalized Block Copolypeptide Hydrogels
    Sun, Yintao
    Bentolila, Laurent A.
    Deming, Timothy J.
    ACS MACRO LETTERS, 2019, 8 (10) : 1275 - 1279
  • [45] Double Smectic Self-Assembly in Block Copolypeptide Complexes
    Haataja, Johannes S.
    Houbenov, Nikolay
    Iatrou, Hermis
    Hadjichristidis, Nikos
    Karatzas, Anastasis
    Faul, Charl F. J.
    Rannou, Patrice
    Ikkala, Olli
    BIOMACROMOLECULES, 2012, 13 (11) : 3572 - 3580
  • [46] Intracellular Fates of Cell-Penetrating Block Copolypeptide Vesicles
    Sun, Victor Z.
    Li, Zhibo
    Deming, Timothy J.
    Kamei, Daniel T.
    BIOMACROMOLECULES, 2011, 12 (01) : 10 - 13
  • [47] Delivery of plasmid DNA using novel block copolypeptide vesicles
    Choe, Uh-Joo
    Sun, Victor Z.
    Rodriguez, April R.
    Dai, Howard
    Deming, Timothy J.
    Kamei, Daniel T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [48] Self-assemblies of amphiphilic cyclodextrins
    Michel Roux
    Bruno Perly
    Florence Djedaïni-Pilard
    European Biophysics Journal, 2007, 36 : 861 - 867
  • [49] Supramolecular assemblies based on amphiphilic cyclodextrins
    Coleman, Anthony W.
    Kasselouri, Athena
    SUPRAMOLECULAR CHEMISTRY, 1993, 1 (02) : 155 - 161
  • [50] Fibrous assemblies made of amphiphilic metallophthalocyanines
    Kimura, M
    Muto, T
    Takimoto, H
    Wada, K
    Ohta, K
    Hanabusa, K
    Shirai, H
    Kobayashi, N
    LANGMUIR, 2000, 16 (05) : 2078 - 2082