HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS

被引:168
作者
Dolbeault, Jean [1 ]
Mouhot, Clement [2 ]
Schmeiser, Christian [3 ]
机构
[1] Univ Paris 09, CNRS, UMR 7534, CEREMADE, F-75775 Paris 16, France
[2] Univ Cambridge, Ctr Math Sci, Cambridge CB3 0WA, England
[3] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Kinetic equations; hypocoercivity; Boltzmann; BGK; relaxation; diffusion limit; nonlinear diffusion; Fokker-Planck; confinement; spectral gap; Poincare inequality; Hardy-Poincare inequality; MICRO-REVERSIBLE PROCESSES; FAST DIFFUSION EQUATION; FOKKER-PLANCK EQUATION; BOLTZMANN-EQUATION; GLOBAL EQUILIBRIUM; EXPONENTIAL DECAY; TREND; INEQUALITIES; CONVERGENCE; MAXWELLIANS;
D O I
10.1090/S0002-9947-2015-06012-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted L-2 norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed.
引用
收藏
页码:3807 / 3828
页数:22
相关论文
共 37 条
  • [1] A simple proof of the Poincare inequality for a large class of probability measures including the log-concave case
    Bakry, Dominique
    Barthe, Franck
    Cattiaux, Patrick
    Guillin, Arnaud
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 60 - 66
  • [2] Hardy-Poincare inequalities and applications to nonlinear diffusions
    Blanchet, Adrien
    Bonforte, Matteo
    Dolbeault, Jean
    Grillo, Gabriele
    Vazquez, Juan-Luis
    [J]. COMPTES RENDUS MATHEMATIQUE, 2007, 344 (07) : 431 - 436
  • [3] Asymptotics of the Fast Diffusion Equation via Entropy Estimates
    Blanchet, Adrien
    Bonforte, Matteo
    Dolbeault, Jean
    Grillo, Gabriele
    Vazquez, Juan Luis
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (02) : 347 - 385
  • [4] Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities
    Bonforte, M.
    Dolbeault, J.
    Grillo, G.
    Vazquez, J. L.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) : 16459 - 16464
  • [5] Caceres Maria J., 2003, COMMUN PART DIFF EQ, V28, P969, DOI [10.1081/PDE-120021182, DOI 10.1081/PDE-120021182]
  • [6] Cattaneo C., 1948, ATTI SEMIN MAT FIS, V3, P83
  • [7] Degond P, 2000, INDIANA U MATH J, V49, P1175
  • [8] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation
    Desvillettes, L
    Villani, C
    [J]. INVENTIONES MATHEMATICAE, 2005, 159 (02) : 245 - 316
  • [9] Desvillettes L, 2001, COMMUN PUR APPL MATH, V54, P1, DOI 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO
  • [10] 2-Q