An exact multiplicity theorem involving concave-convex nonlinearities and its application to stationary solutions of a singular diffusion problem

被引:14
作者
Wang, SH [1 ]
Long, DM [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 300, Taiwan
关键词
bifurcation positive solution; two-point boundary value problem; time map; singular diffusion equation; plasma equation;
D O I
10.1016/S0362-546X(99)00272-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact multiplicity of positive solutions of the two-point Dirichlet boundary value problem is presented. The Dirichlet problem where L>0 is a bifurcation parameter and the nonlinearity F∈C2(0, ∞) intersection C[0, ∞) satisfies a number of theories. The solutions effectively solve the concave-convex polynomial nonlinearities.
引用
收藏
页码:469 / 486
页数:18
相关论文
共 15 条
[1]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[2]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302
[3]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325
[4]  
DENG K, 1992, NONLINEAR ANAL TMA, V18, P731
[5]   THE CRITICAL LENGTH FOR A QUENCHING PROBLEM [J].
GUO, JS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (06) :507-516
[6]   Exact multiplicity results for boundary value problems with nonlinearities generalising cubic [J].
Korman, P ;
Li, Y ;
Ouyang, T .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :599-616
[7]  
Korman P., 1993, DIFFER INTEGRAL EQU, V6, P1507
[9]  
LEVINE H, 1992, NONLINEAR DIFFUSION, V3, P319
[10]   QUENCHING, NONQUENCHING, AND BEYOND QUENCHING FOR SOLUTION OF SOME PARABOLIC EQUATIONS [J].
LEVINE, HA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :243-260