Limiting probabilities of first order properties of random sparse graphs and hypergraphs

被引:2
|
作者
Larrauri, Alberto [1 ]
Muller, Tobias [2 ]
Noy, Marc [3 ]
机构
[1] Univ Politecn Cataluna, Dept Comp Sci, Barcelona, Spain
[2] Univ Groningen, Dept Math, Groningen, Netherlands
[3] Univ Politecn Cataluna, Dept Math, Barcelona, Spain
基金
欧洲研究理事会;
关键词
first order logic; logical limit laws; sparse random graphs and hypergraphs;
D O I
10.1002/rsa.21041
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let Gn be the binomial random graph G(n,p=c/n) in the sparse regime, which as is well-known undergoes a phase transition at c=1. Lynch (RandomStructuresandAlgorithms, 1992) showed that for every first order sentence phi, the limiting probability that Gn satisfies phi as n ->infinity exists, and moreover it is an analytic function of c. In this paper we consider the closure Lc? in the interval [0,1] of the set Lc of all limiting probabilities of first order sentences in Gn. We show that there exists a critical value c0 approximate to 0.93 such that Lc?=[0,1] when c >= c0, whereas Lc? misses at least one subinterval when c<c0. We extend these results to random sparse d-uniform hypergraphs, where the probability of a d-edge is p=c/nd-1.
引用
收藏
页码:506 / 526
页数:21
相关论文
共 50 条
  • [1] First order distinguishability of sparse random graphs
    Hershko, Tal
    Zhukovskii, Maksim
    PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,
  • [2] First-order and monadic properties of highly sparse random graphs
    M. E. Zhukovskii
    L. B. Ostrovskii
    Doklady Mathematics, 2016, 94 : 555 - 557
  • [3] First-order and monadic properties of highly sparse random graphs
    Zhukovskii, M. E.
    Ostrovskii, L. B.
    DOKLADY MATHEMATICS, 2016, 94 (02) : 555 - 557
  • [4] First-order properties of bounded quantifier depth of very sparse random graphs
    Zhukovskii, Maksim E.
    Ostrovskii, Lev B.
    IZVESTIYA MATHEMATICS, 2017, 81 (06) : 1155 - 1167
  • [5] First-order definability of trees and sparse random graphs
    Bohman, Tom
    Frieze, Alan
    Luczak, Tomasz
    Pikhurko, Oleg
    Smyth, Clifford
    Spencer, Joel
    Verbitsky, Oleg
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (03): : 375 - 400
  • [6] Infinite Spectra of First-Order Properties for Random Hypergraphs
    Popova, S. N.
    PROBLEMS OF INFORMATION TRANSMISSION, 2018, 54 (03) : 281 - 289
  • [7] Infinite Spectra of First-Order Properties for Random Hypergraphs
    S. N. Popova
    Problems of Information Transmission, 2018, 54 : 281 - 289
  • [8] Deciding first-order properties for sparse graphs
    Dvorak, Zdenek
    Kral', Daniel
    Thomas, Robin
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 133 - 142
  • [9] PROBABILITIES OF SENTENCES ABOUT VERY SPARSE RANDOM GRAPHS
    LYNCH, JF
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) : 33 - 53
  • [10] The First-Order Contiguity of Sparse Random Graphs with Prescribed Degrees
    Lefebvre, Nans
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 177 - 188