Anisotropic Delaunay Meshes of Surfaces

被引:18
作者
Boissonnat, Jean-Daniel [1 ]
Shi, Kan-Le [2 ]
Tournois, Jane [3 ]
Yvinec, Mariette [1 ]
机构
[1] INRIA Sophia Antipolis, F-06902 Valbonne, France
[2] Tsinghua Univ, Haidian, Peoples R China
[3] GeometryFactory, F-06560 Valbonne, France
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 02期
关键词
Algorithms; Mesh generation; anisotropic meshes; Delaunay triangulation; Delaunay refinement;
D O I
10.1145/2721895
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Anisotropic simplicial meshes are triangulations with elements elongated along prescribed directions. Anisotropic meshes have been shown well suited for interpolation of functions or solving PDEs. They can also significantly enhance the accuracy of a surface representation. Given a surface S endowed with ametric tensor field, we propose a new approach to generate an anisotropic mesh that approximates S with elements shaped according to the metric field. The algorithm relies on the well-established concepts of restricted Delaunay triangulation and Delaunay refinement and comes with theoretical guarantees. The star of each vertex in the output mesh is Delaunay for the metric attached to this vertex. Each facet has a good aspect ratio with respect to the metric specified at any of its vertices. The algorithm is easy to implement. It can mesh various types of surfaces like implicit surfaces, polyhedra, or isosurfaces in 3D images. It can handle complicated geometries and topologies, and very anisotropic metric fields.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Variational tetrahedral meshing [J].
Alliez, P ;
Cohen-Steiner, D ;
Yvinec, M ;
Desbrun, M .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :617-625
[2]   A simple algorithm for homeomorphic surface reconstruction [J].
Amenta, N ;
Choi, S ;
Dey, TK ;
Leekha, N .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2002, 12 (1-2) :125-141
[3]   Surface reconstruction by Voronoi filtering [J].
Amenta, N ;
Bern, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (04) :481-504
[4]  
[Anonymous], 2003, P 19 ANN S COMP GEOM, DOI DOI 10.1145/777792.777822
[5]  
[Anonymous], 1993, P 9 ANN S COMPUTATIO, DOI 10.1145/160985.161150
[6]   Mesh sizing with additively weighted Voronoi diagrams [J].
Antani, Lakulish ;
Delage, Christophe ;
Alliez, Pierre .
PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE, 2008, :335-+
[7]  
Azernikov S., 2005, P INT C SHAP MOD APP
[8]  
Boissonnat J.-D., 2011, RR7712 INRIA
[9]  
Boissonnat J.-D., 2010, P 26 ANN S COMP GEOM
[10]   Provably good sampling and meshing of surfaces [J].
Boissonnat, JD ;
Oudot, S .
GRAPHICAL MODELS, 2005, 67 (05) :405-451