Deciphering the role of Ni particle size and nickel-ceria interfacial perimeter in the low-temperature CO2 methanation reaction over remarkably active Ni/CeO2 nanorods

被引:92
作者
Varvoutis, Georgios [1 ,2 ]
Lykaki, Maria [3 ]
Stefa, Sofia [3 ]
Binas, Vassilios [4 ]
Marnellos, George E. [1 ,2 ]
Konsolakis, Michalis [3 ]
机构
[1] Univ Western Macedonia, Dept Mech Engn, GR-50100 Kozani, Greece
[2] Ctr Res & Technol Hellas, Chem Proc & Energy Resources Inst, GR-57001 Thessaloniki, Greece
[3] Tech Univ Crete, Sch Prod Engn & Management, GR-73100 Khania, Greece
[4] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion, Greece
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2021年 / 297卷
关键词
CO2; methanation; Ni catalysts; CeO2; nanorods; Particle size effect; Structure-sensitivity; GAS SHIFT REACTION; CATALYTIC-ACTIVITY; CARBON-DIOXIDE; STRUCTURE SENSITIVITY; RAMAN-SPECTROSCOPY; NI/SIO2; CATALYSTS; PARTIAL OXIDATION; OXYGEN VACANCIES; TURNOVER RATES; SUPPORTED NI;
D O I
10.1016/j.apcatb.2021.120401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structure sensitivity of CO2 methanation was explored over nickel particles (10-25 nm) supported on CeO2 nanorods. An optimum Ni particle size of 20 nm was revealed, with the corresponding sample demonstrating remarkable activity, i.e., 187 mu mol CH4 g(-1) s(-1) and 92 % CH4 yield at 275 degrees C, which is among the highest ever reported. Notably, the intrinsic activity on the basis of the exposed Ni sites or Ni-ceria perimeter is largely in-dependent of the Ni size, showcasing that neither the exposed Ni sites nor the Ni-ceria interface can be employed as activity descriptors. A compromise between the length of the metal-support perimeter and the competitive presence of larger Ni particles is necessary for the optimum activity. On the grounds of a structure-sensitivity analysis, the superior activity of larger Ni particles could be attributed to the presence of under-coordinated step and kink sites, instead of largely inactive terrace sites.
引用
收藏
页数:14
相关论文
共 145 条
[1]   Defect Chemistry of Ceria Nanorods [J].
Agarwal, S. ;
Zhu, X. ;
Hensen, E. J. M. ;
Lefferts, L. ;
Mojet, B. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (08) :4131-4142
[2]   Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation [J].
Alarcon, Andreina ;
Guilera, Jordi ;
Antonio Diaz, Jose ;
Andreu, Teresa .
FUEL PROCESSING TECHNOLOGY, 2019, 193 :114-122
[3]   Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation [J].
Alcalde-Santiago, Virginia ;
Davo-Quinonero, Arantxa ;
Lozano-Castello, Dolores ;
Quindimil, Adrian ;
De-La-Torre, Unai ;
Pereda-Ayo, Benat ;
Gonzalez-Marcos, Jose A. ;
Gonzalez-Velasco, Juan R. ;
Bueno-Lopez, Agustin .
CHEMCATCHEM, 2019, 11 (02) :810-819
[4]   Thermochemical and electrochemical aspects of carbon dioxide methanation: A sustainable approach to generate fuel via waste to energy theme [J].
Ali, Nisar ;
Bilal, Muhammad ;
Nazir, Muhammad Shahzad ;
Khan, Adnan ;
Ali, Farman ;
Iqbal, Hafiz M. N. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 712
[5]   Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation [J].
Alrafei, Bachar ;
Polaert, Isabelle ;
Ledoux, Alain ;
Azzolina-Jury, Federico .
CATALYSIS TODAY, 2020, 346 :23-33
[6]  
Altfeld K., 2013, Gas Energy, VMarch/2013, P1
[7]   Structure sensitivity of the methanation reaction:: H2-induced CO dissociation on nickel surfaces [J].
Andersson, M. P. ;
Abild-Pedersen, F. ;
Remediakis, I. N. ;
Bligaard, T. ;
Jones, G. ;
Engbwk, J. ;
Lytken, O. ;
Horch, S. ;
Nielsen, J. H. ;
Sehested, J. ;
Rostrup-Nielsen, J. R. ;
Norskov, J. K. ;
Chorkendorff, I. .
JOURNAL OF CATALYSIS, 2008, 255 (01) :6-19
[8]  
Aneggi E, 2020, METAL OXIDES, P45, DOI 10.1016/B978-0-12-815661-2.00003-7
[9]   Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods [J].
Ashok, J. ;
Ang, M. L. ;
Kawi, S. .
CATALYSIS TODAY, 2017, 281 :304-311
[10]   A review of recent catalyst advances in CO2 methanation processes [J].
Ashok, Jangam ;
Pati, Subhasis ;
Hongmanorom, Plaifa ;
Tianxi, Zhang ;
Junmei, Chen ;
Kawi, Sibudjing .
CATALYSIS TODAY, 2020, 356 :471-489