Dimensional Design for Surface-Enhanced Raman Spectroscopy

被引:35
|
作者
Long, Li [1 ]
Ju, Wenbo [1 ]
Yang, Hai-Yao [1 ]
Li, Zhiyuan [1 ]
机构
[1] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510641, Peoples R China
来源
ACS MATERIALS AU | 2022年 / 2卷 / 05期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
SERS; dimensional design; enhancing substrates; nanoparticle; nanowire; 2D material; nanostructure array; spatiotemporal resolution; LOW-FREQUENCY MODES; SINGLE-MOLECULE; SILVER NANOPARTICLES; NANOSPHERE LITHOGRAPHY; PLASMON RESONANCE; GOLD NANOPARTICLES; HOT-SPOTS; SCATTERING PROPERTIES; METAL NANOPARTICLES; FACILE SYNTHESIS;
D O I
10.1021/acsmaterialsau.2c00005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the singlemolecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
引用
收藏
页码:552 / 575
页数:24
相关论文
共 50 条
  • [31] Surface-enhanced Raman Spectroscopy of Pterins
    Smyth, Ciaran A.
    Mirza, Inam
    Lunney, James G.
    McCabe, Eithne M.
    PLASMONICS IN BIOLOGY AND MEDICINE IX, 2012, 8234
  • [32] Ultrafast surface-enhanced Raman spectroscopy
    Keller, Emily L.
    Brandt, Nathaniel C.
    Cassabaum, Alyssa A.
    Frontiera, Renee R.
    ANALYST, 2015, 140 (15) : 4922 - 4931
  • [33] Gold mesoparticles with precisely controlled surface topographies for single-particle surface-enhanced Raman spectroscopy
    Liu, Zhen
    Zhang, Fangling
    Yang, Zhongbo
    You, Hongjun
    Tian, Cuifeng
    Li, Zhiyuan
    Fang, Jixiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (35) : 5567 - 5576
  • [34] Detection and classification of fentanyl and its precursors by surface-enhanced Raman spectroscopy
    Mirsafavi, Rustin
    Moskovits, Martin
    Meinhart, Cart
    ANALYST, 2020, 145 (09) : 3440 - 3446
  • [35] Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)
    Hudson, Stephen D.
    Chumanov, George
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (03) : 679 - 686
  • [36] Chemical agent identification by surface-enhanced Raman spectroscopy
    Farquharson, S
    Maksymiuk, P
    Ong, K
    Christesen, SD
    VIBRATIONAL SPECTROSCOPY-BASED SENSOR SYSTEMS, 2002, 4577 : 166 - 173
  • [37] Single-Molecule Surface-Enhanced Raman Spectroscopy
    Qiu, Yuxuan
    Kuang, Cuifang
    Liu, Xu
    Tang, Longhua
    SENSORS, 2022, 22 (13)
  • [38] Identification and Analysis of Exosomes by Surface-Enhanced Raman Spectroscopy
    Merdalimova, Anastasiia
    Chernyshev, Vasiliy
    Nozdriukhin, Daniil
    Rudakovskaya, Polina
    Gorin, Dmitry
    Yashchenok, Alexey
    APPLIED SCIENCES-BASEL, 2019, 9 (06):
  • [39] Surface-enhanced Raman spectroscopy: bottlenecks and future directions
    Panneerselvam, Rajapandiyan
    Liu, Guo-Kun
    Wang, Yao-Hui
    Liu, Jun-Yang
    Ding, Song-Yuan
    Li, Jian-Feng
    Wu, De-Yin
    Tian, Zhong-Qun
    CHEMICAL COMMUNICATIONS, 2018, 54 (01) : 10 - 25
  • [40] Boron nitride nanosheets for surface-enhanced Raman spectroscopy
    Cai, Qiran
    Mateti, Srikanth
    Jiang, Hongbo
    Li, Lu Hua
    Huang, Shaoming
    Chen, Ying
    MATERIALS TODAY PHYSICS, 2022, 22