Dimensional Design for Surface-Enhanced Raman Spectroscopy

被引:35
|
作者
Long, Li [1 ]
Ju, Wenbo [1 ]
Yang, Hai-Yao [1 ]
Li, Zhiyuan [1 ]
机构
[1] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510641, Peoples R China
来源
ACS MATERIALS AU | 2022年 / 2卷 / 05期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SERS; dimensional design; enhancing substrates; nanoparticle; nanowire; 2D material; nanostructure array; spatiotemporal resolution; LOW-FREQUENCY MODES; SINGLE-MOLECULE; SILVER NANOPARTICLES; NANOSPHERE LITHOGRAPHY; PLASMON RESONANCE; GOLD NANOPARTICLES; HOT-SPOTS; SCATTERING PROPERTIES; METAL NANOPARTICLES; FACILE SYNTHESIS;
D O I
10.1021/acsmaterialsau.2c00005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the singlemolecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
引用
收藏
页码:552 / 575
页数:24
相关论文
共 50 条
  • [31] Surface-enhanced Raman spectroscopy of bacteria and pollen
    Sengupta, A
    Laucks, ML
    Davis, EJ
    APPLIED SPECTROSCOPY, 2005, 59 (08) : 1016 - 1023
  • [32] Electrochemical surface-enhanced Raman spectroscopy of nanostructures
    Wu, De-Yin
    Li, Jian-Feng
    Ren, Bin
    Tian, Zhong-Qun
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 1025 - 1041
  • [33] Surface-enhanced Raman spectroscopy for in vivo biosensing
    Stacey Laing
    Lauren E. Jamieson
    Karen Faulds
    Duncan Graham
    Nature Reviews Chemistry, 1
  • [34] Quantitative Analysis of Surface-Enhanced Raman Spectroscopy
    Tao Qin
    Dong Jian
    Qian Weiping
    PROGRESS IN CHEMISTRY, 2013, 25 (06) : 1031 - 1041
  • [35] Bioanalytical applications of surface-enhanced Raman spectroscopy
    Sharma, Bhavya
    Van Duyne, Richard P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [36] A unified approach to surface-enhanced Raman spectroscopy
    Lombardi, John R.
    Birke, Ronald L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14): : 5605 - 5617
  • [37] Detection of bacteria by surface-enhanced Raman spectroscopy
    Atanu Sengupta
    Mirna Mujacic
    E. James Davis
    Analytical and Bioanalytical Chemistry, 2006, 386 : 1379 - 1386
  • [38] Special issue on surface-enhanced Raman spectroscopy
    Alvarez-Puebla, Ramon A.
    Ling, Xing Yi
    Candeloro, Patrizio
    de la Chapelle, Marc Lamy
    JOURNAL OF OPTICS, 2015, 17 (11)
  • [39] Bioanalytical applications of surface-enhanced Raman spectroscopy
    Sharma, Bhavya
    Van Duyne, Richard P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [40] Surface-enhanced Raman spectroscopy: a brief perspective
    Moskovits, Martin
    SURFACE-ENHANCED RAMAN SCATTERING: PHYSICS AND APPLICATIONS, 2006, 103 : 1 - 17