Einstein-Weyl structures from hyper-Kahler metrics with conformal Killing vectors

被引:23
作者
Dunajski, M [1 ]
Tod, P [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
Einstein-Weyl structures; hyper-Kahler metrics; monopoles;
D O I
10.1016/S0926-2245(00)00037-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider four (real or complex) dimensional hyper-Kahler metrics with a conformal symmetry K. The three-dimensional space of orbits of K is shown to have an Einstein-Weyl structure which admits a shear-free geodesics congruence for which the twist is a constant multiple of the divergence. In this case the Einstein-Weyl equations reduce down to a single second order PDE for one function. The Lax representation, Lie point symmetries, hidden symmetries and the recursion operator associated with this PDE are found, and some group invariant solutions an considered.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 15 条
[11]   3-DIMENSIONAL EINSTEIN-WEYL GEOMETRY [J].
PEDERSEN, H ;
TOD, KP .
ADVANCES IN MATHEMATICS, 1993, 97 (01) :74-109
[12]   SOME SOLUTIONS OF COMPLEX EINSTEIN EQUATIONS [J].
PLEBANSKI, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (12) :2395-2402
[13]   SCALAR-FLAT KAHLER AND HYPER-KAHLER METRICS FROM PAINLEVE-III [J].
TOD, KP .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (06) :1535-1547
[14]  
TOD KP, 1997, TWISTOR NEWSLETTER, V43, P13
[15]   EINSTEIN-WEYL SPACES AND SU(INFINITY) TODA FIELDS [J].
WARD, RS .
CLASSICAL AND QUANTUM GRAVITY, 1990, 7 (04) :L95-L98