Einstein-Weyl structures from hyper-Kahler metrics with conformal Killing vectors

被引:23
作者
Dunajski, M [1 ]
Tod, P [1 ]
机构
[1] Math Inst, Oxford OX1 3LB, England
关键词
Einstein-Weyl structures; hyper-Kahler metrics; monopoles;
D O I
10.1016/S0926-2245(00)00037-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider four (real or complex) dimensional hyper-Kahler metrics with a conformal symmetry K. The three-dimensional space of orbits of K is shown to have an Einstein-Weyl structure which admits a shear-free geodesics congruence for which the twist is a constant multiple of the divergence. In this case the Einstein-Weyl equations reduce down to a single second order PDE for one function. The Lax representation, Lie point symmetries, hidden symmetries and the recursion operator associated with this PDE are found, and some group invariant solutions an considered.
引用
收藏
页码:39 / 55
页数:17
相关论文
共 15 条
[1]  
[Anonymous], LECT NOTES MATH
[2]   KILLING VECTORS IN SELF-DUAL, EUCLIDEAN EINSTEIN-SPACES [J].
BOYER, CP ;
FINLEY, JD .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :1126-1130
[3]   SYMMETRIES OF THE SELF-DUAL EINSTEIN EQUATIONS .1. THE INFINITE-DIMENSIONAL SYMMETRY GROUP AND ITS LOW-DIMENSIONAL SUBGROUPS [J].
BOYER, CP ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (05) :1081-1094
[4]   Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics [J].
Calderbank, DMJ ;
Pedersen, H .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :921-+
[5]  
CARTAN E, 1943, ANN SCI ECOLE NORM S, V60, P1
[6]   (4,0) and (4,4) sigma models with a tri-holomorphic Killing vector [J].
Chave, T ;
Tod, KP ;
Valent, G .
PHYSICS LETTERS B, 1996, 383 (03) :262-270
[7]   Hyper-Kahler hierarchies and their twister theory [J].
Dunajski, M ;
Mason, LJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (03) :641-672
[8]   Hyper-Hermitian metrics with symmetry [J].
Gauduchon, P ;
Tod, KP .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 25 (3-4) :291-304
[9]   MINITWISTOR SPACES AND EINSTEIN-WEYL SPACES [J].
JONES, PE ;
TOD, KP .
CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (04) :565-577
[10]  
LEBRUN CR, 1991, J DIFFER GEOM, V34, P233