Algebraic Characters of Harish-Chandra Modules

被引:0
作者
Januszewski, Fabian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Algebra & Geometrie, D-76133 Karlsruhe, Germany
关键词
Harish-Chandra modules; Lie algebra cohomology; algebraic characters; Blattner formulae; non-admissible branching laws; localization of Grothendieck groups; DISCRETE DECOMPOSABILITY; REDUCTIVE SUBGROUPS; REPRESENTATIONS; RESTRICTION; RESPECT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a cohomological treatment of a character theory for (g, K)-modules. This leads to a nice formalism extending to large categories of not necessarily admissible (g, K) -modules. Due to results of Hecht, Schmid and Vogan the classical results of Harish-Chandra's global character theory extend to this general setting. As an application we consider a general setup, for which we show that algebraic characters answer discretely decomposable branching problems.
引用
收藏
页码:1161 / 1206
页数:46
相关论文
共 50 条
[41]   Representation homology, Lie algebra cohomology and the derived Harish-Chandra homomorphism [J].
Berest, Yuri ;
Felder, Giovanni ;
Patotski, Sasha ;
Ramadoss, Ajay C. ;
Willwacher, Thomas .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (09) :2811-2893
[42]   Associated variety, Kostant-Sekiguchi correspondence, and locally free U(n)-action on Harish-Chandra modules [J].
Gyoja, A ;
Yamashita, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (01) :129-149
[43]   Harish-Chandra's Schwartz Algebras Associated with Discrete Subgroups of Semisimple Lie Groupsi [J].
Boyer, Adrien .
JOURNAL OF LIE THEORY, 2017, 27 (03) :831-844
[44]   ISOSPECTRAL COMMUTING VARIETY, THE HARISH-CHANDRA D-MODULE, AND PRINCIPAL NILPOTENT PAIRS [J].
Ginzburg, Victor .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (11) :2023-2111
[45]   Harish Chandra Modules of Rank One Lie Groups with Admissible Restriction to Some Reductive Subgroup [J].
Vargas, Jorge .
JOURNAL OF LIE THEORY, 2010, 20 (04) :643-663
[46]   IRREDUCIBLE HARISH CHANDRA MODULES OVER THE DERIVATION ALGEBRAS OF RATIONAL QUANTUM TORI [J].
Liu, Genqiang ;
Zhao, Kaiming .
GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (03) :677-693
[47]   GENERALIZED HARISH-CHANDRA DESCENT, GELFAND PAIRS, AND AN ARCHIMEDEAN ANALOG OF JACQUET-RALLIS'S THEOREM [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry ;
Sayag, Eitan .
DUKE MATHEMATICAL JOURNAL, 2009, 149 (03) :509-567
[48]   A Cauchy Harish-Chandra integral for a dual pair over a p-adic field, the definition and a conjecture [J].
Loke, Hung Yean ;
Przebinda, Tomasz .
JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (07)
[49]   GALOIS AUTOMORPHISMS ON HARISH-CHANDRA SERIES AND NAVARRO'S SELF-NORMALIZING SYLOW 2-SUBGROUP CONJECTURE [J].
Fry, A. A. Schaeffer .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) :457-483
[50]   ALGEBRAIC ANALYSIS OF SCALAR GENERALIZED VERMA MODULES OF HEISENBERG PARABOLIC TYPE I: A n -SERIES [J].
Krizka, L. ;
Somberg, P. .
TRANSFORMATION GROUPS, 2017, 22 (02) :403-451