Algebraic Characters of Harish-Chandra Modules

被引:0
作者
Januszewski, Fabian [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Algebra & Geometrie, D-76133 Karlsruhe, Germany
关键词
Harish-Chandra modules; Lie algebra cohomology; algebraic characters; Blattner formulae; non-admissible branching laws; localization of Grothendieck groups; DISCRETE DECOMPOSABILITY; REDUCTIVE SUBGROUPS; REPRESENTATIONS; RESTRICTION; RESPECT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a cohomological treatment of a character theory for (g, K)-modules. This leads to a nice formalism extending to large categories of not necessarily admissible (g, K) -modules. Due to results of Hecht, Schmid and Vogan the classical results of Harish-Chandra's global character theory extend to this general setting. As an application we consider a general setup, for which we show that algebraic characters answer discretely decomposable branching problems.
引用
收藏
页码:1161 / 1206
页数:46
相关论文
共 50 条
[21]   Reducible characteristic cycles of Harish-Chandra modules for and the Kashiwara-Saito singularity [J].
Barchini, Leticia ;
Somberg, Petr ;
Trapa, Peter E. .
COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) :4874-4888
[22]   Classification of simple Harish-Chandra modules over the Ovsienko-Roger superalgebra [J].
Dilxat, Munayim ;
Chen, Liangyun ;
Liu, Dong .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (02) :483-493
[23]   HARISH-CHANDRA MODULES OVER INVARIANT SUBALGEBRAS IN A SKEW-GROUP RING [J].
Mazorchuk, Volodymyr ;
Vishnyakova, Elizaveta .
ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (03) :431-454
[24]   Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra [J].
Guo, Xiangqian ;
Lu, Rencai ;
Zhao, Kaiming .
FORUM MATHEMATICUM, 2011, 23 (05) :1029-1052
[25]   Harish-Chandra Modules of the Intermediate Series over the Topological N=2 Superconformal Algebra [J].
Yang, Hengyun ;
Xu, Ying ;
Sunk, Jiancai .
ALGEBRA COLLOQUIUM, 2020, 27 (02) :343-360
[26]   Classification of simple Harish-Chandra modules for map (super)algebras related to the Virasoro algebra [J].
Cai, Yan-an ;
Lu, Rencai ;
Wang, Yan .
JOURNAL OF ALGEBRA, 2021, 570 :397-415
[27]   Unitary Harish-Chandra Modules over Block Type Lie Algebras B(q) [J].
Chen, Hongjia ;
Guo, Xiangqian .
JOURNAL OF LIE THEORY, 2013, 23 (03) :827-836
[28]   Affine Jacquet functors and Harish-Chandra categories [J].
Yakimov, Milen .
ADVANCES IN MATHEMATICS, 2007, 208 (01) :40-74
[29]   A direct proof of a generalized harish-chandra isomorphism [J].
Joseph, Anthony .
TRANSFORMATION GROUPS, 2012, 17 (02) :513-521
[30]   Connection coefficients for basic Harish-Chandra series [J].
Stokman, Jasper V. .
ADVANCES IN MATHEMATICS, 2014, 250 :351-386