The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans

被引:89
作者
Arana, DM [1 ]
Nombela, C [1 ]
Alonso-Monge, R [1 ]
Pla, J [1 ]
机构
[1] Univ Complutense Madrid, Dept Microbiol 2, Fac Farm, E-28040 Madrid, Spain
来源
MICROBIOLOGY-SGM | 2005年 / 151卷
关键词
D O I
10.1099/mic.0.27723-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The human fungal pathogen Candida albicans responds to stress by phosphorylation of the Hog1 MAP kinase. PBS2 was cloned and shown to encode the MAP kinase kinase that is involved in this activation, as determined by immunoblot analyses using antibodies that recognize the active form of the target Hog1 protein. Characterization of pbs2 mutants revealed that they were sensitive to both osmotic and oxidative stress and that they, interestingly, displayed differential behaviour from that of hog1 mutants, losing viability when exposed to an oxidative challenge more rapidly than the hog1 strain. Hog1 and Pbs2 were also shown to be involved in the mechanism of adaptation to oxidative stress, as evidenced by the enhanced susceptibility to oxidants of pbs2 and hogl mutants, compared with the wild-type strain, when cells were previously exposed to a low, sub-lethal concentration of hydrogen peroxide and by the PBS2-dependent diminished activation of Hog1 MAP kinase in the adaptive process. Studies with a chimaeric Hog1-green fluorescent protein fusion revealed that this protein was localized throughout the cell (being excluded from the vacuole), but concentrated in the nucleus in response to NaCl stress, a process that was dependent on the Pbs2 protein. Both Hog 1 and Pbs2 also play a role in controlling the phosphorylation state of the other MAP kinases Mkc1 and Cek1, involved respectively in cell-wall integrity and invasive growth. Furthermore, it is demonstrated that PBS2 plays a role in cell-wall biogenesis in this fungal pathogen, as its deletion renders cells with an altered susceptibility to certain cell wall-interfering compounds.
引用
收藏
页码:1033 / 1049
页数:17
相关论文
共 69 条
  • [1] GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY
    ALBERTYN, J
    HOHMANN, S
    THEVELEIN, JM
    PRIOR, BA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) : 4135 - 4144
  • [2] Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans
    Alonso-Monge, R
    Navarro-García, F
    Molero, G
    Diez-Orejas, R
    Gustin, M
    Pla, J
    Sánchez, M
    Nombela, C
    [J]. JOURNAL OF BACTERIOLOGY, 1999, 181 (10) : 3058 - 3068
  • [3] The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans
    Alonso-Monge, R
    Navarro-García, F
    Román, E
    Negredo, AI
    Eisman, B
    Nombela, C
    Pla, J
    [J]. EUKARYOTIC CELL, 2003, 2 (02) : 351 - 361
  • [4] Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects
    Alonso-Monge, R
    Real, E
    Wojda, I
    Bebelman, JP
    Mager, WH
    Siderius, M
    [J]. MOLECULAR MICROBIOLOGY, 2001, 41 (03) : 717 - 730
  • [5] Signalling in the yeasts: An informational cascade with links to the filamentous fungi
    Banuett, F
    [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) : 249 - +
  • [6] Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1
    Bilsland-Marchesan, E
    Ariño, J
    Saito, H
    Sunnerhagen, P
    Posas, F
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (11) : 3887 - 3895
  • [7] POSITIONING OF CELL-GROWTH AND DIVISION AFTER OSMOTIC-STRESS REQUIRES A MAP KINASE PATHWAY
    BREWSTER, JL
    GUSTIN, MC
    [J]. YEAST, 1994, 10 (04) : 425 - 439
  • [8] AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST
    BREWSTER, JL
    DEVALOIR, T
    DWYER, ND
    WINTER, E
    GUSTIN, MC
    [J]. SCIENCE, 1993, 259 (5102) : 1760 - 1763
  • [9] Calera JA, 2000, YEAST, V16, P1053, DOI 10.1002/1097-0061(200008)16:11&lt
  • [10] 1053::AID-YEA598&gt