Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum

被引:63
作者
Yan, Changzhou [1 ]
Li, Guoxin [1 ]
Xue, Peiying [1 ]
Wei, Qunshan [1 ]
Li, Qingzhao [1 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Health, Xiamen 361021, Peoples R China
关键词
Biosorption; Competitive biosorption; Lead; Aquatic plant; Langmuir competitive model; AQUEOUS-SOLUTIONS; SINGLE-COMPONENT; HEAVY-METALS; EQUILIBRIUM; ADSORPTION; REMOVAL; CADMIUM(II); KINETICS; IONS; COPPER(II);
D O I
10.1016/j.jhazmat.2010.03.061
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Batch experiments were conducted to assess the effects of Cu(II) and Zn(II) on the biosorption of Pb(II) ions by fresh tissues of Myriophyllum spicatum. The biosorption of Pb(II) was examined for single, binary and ternary solutions at different initial concentrations and different pH values. The experimental results showed that the biosorption capacity increased with increasing pH from 2.0 to 6.0. Both Cu(II) and Zn(II) ions were found to have an adverse effect on the biosorption of Pb(II). The biosorption equilibrium data for single-metal solution were fitted to three isotherm models: Langmuir, Freundlich and Sips, and the Sips isotherm model gave the best fit for the experimental data. The maximum biosorption of Pb(II) in Pb-Cu binary system decreased with increasing concentration of copper ions, and the biosorption equilibrium data for the binary metal solution fitted the Langmuir competitive model well. Comparison between biosorption of Pb(II) and Cu(II) by M. spicatum in the binary solution could lead to the conclusion that the biosorbent (M. spicatum) has no preference of Pb(II) over Cu(II). Fourier transform infrared (FT-IR) spectroscopy was used to characterize the interaction between M. spica turn and Pb(II) ions. The results revealed that the carboxyl, hydroxyl and carbonyl groups are the main binding sites for Pb(II). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 41 条
[1]   Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris:: Co-ion effect on mono-component isotherm parameters [J].
Aksu, Z ;
Dönmez, G .
PROCESS BIOCHEMISTRY, 2006, 41 (04) :860-868
[2]   Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge [J].
Aksu, Z ;
Açikel, Ü ;
Kabasakal, E ;
Tezer, S .
WATER RESEARCH, 2002, 36 (12) :3063-3073
[3]   Bioaccumulation of chromium from tannery wastewater: An approach for chrome recovery and reuse [J].
Aravindhan, R ;
Madhan, B ;
Rao, JR ;
Nair, BU ;
Ramasami, T .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (01) :300-306
[4]   Biosorption of copper(II) from aqueous solutions by wheat shell [J].
Basci, N ;
Kocadagistan, E ;
Kocadagistan, B .
DESALINATION, 2004, 164 (02) :135-140
[5]   Effects of competing cations on cadmium biosorption by chitin [J].
Benguella, B ;
Benaissa, H .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 201 (1-3) :143-150
[6]   Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos) [J].
Chakravarty, S. ;
Mohanty, Ashok ;
Sudha, T. Nag ;
Upadhyay, A. K. ;
Konar, J. ;
Sircar, J. K. ;
Madhukar, A. ;
Gupta, K. K. .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 173 (1-3) :502-509
[7]   Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw [J].
Dang, V. B. H. ;
Doan, H. D. ;
Dang-Vu, T. ;
Lohi, A. .
BIORESOURCE TECHNOLOGY, 2009, 100 (01) :211-219
[8]   HEAVY-METAL BIOSORPTION BY FUNGAL MYCELIAL BY-PRODUCTS - MECHANISMS AND INFLUENCE OF PH [J].
FOUREST, E ;
ROUX, JC .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1992, 37 (03) :399-403
[9]   CHARACTERISATION OF URANIUM(VI) SORPTION BY TWO ENVIRONMENTAL FUNGAL SPECIES USING GAMMA SPECTROMETRY [J].
Gargarello, R. ;
Cavalitto, S. ;
Di Gregorio, D. ;
Fernandez Niello, J. ;
Huck, H. ;
Pardo, A. ;
Somacal, H. ;
Curutchet, G. .
ENVIRONMENTAL TECHNOLOGY, 2008, 29 (12) :1341-1348
[10]   Biosorption of lead from aqueous solutions by green algae Spirogyra species:: Kinetics and equilibrium studies [J].
Gupta, V. K. ;
Rastogi, A. .
JOURNAL OF HAZARDOUS MATERIALS, 2008, 152 (01) :407-414