Stability estimates for non-local scalar conservation laws

被引:20
作者
Chiarello, Felisia Angela [1 ]
Goatin, Paola [1 ]
Rossi, Elena [1 ]
机构
[1] Univ Cote Azur, Inria Sophia Antipolis Mediterranee, INRIA, CNRS,LJAD, 2004 Route Lucioles BP 93, F-06902 Sophia Antipolis, France
关键词
Scalar conservation laws; Non-local flux; Stability; TRAFFIC FLOW; BALANCE LAWS; WELL-POSEDNESS; WEAK SOLUTIONS; SIMULATION; UNIQUENESS; EQUATION;
D O I
10.1016/j.nonrwa.2018.07.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the stability of entropy weak solutions of a class of scalar conservation laws with non-local flux arising in traffic modelling. We obtain an estimate of the dependence of the solution with respect to the kernel function, the speed and the initial datum. Stability is obtained from the entropy condition through doubling of variable technique. We finally provide some numerical simulations illustrating the dependencies above for some cost functionals derived from traffic flow applications. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:668 / 687
页数:20
相关论文
共 22 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation [J].
Amadori, Debora ;
Ha, Seung-Yeal ;
Park, Jinyeong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) :978-1022
[3]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[4]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[5]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[6]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[7]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[8]   GLOBAL ENTROPY WEAK SOLUTIONS FOR GENERAL NON-LOCAL TRAFFIC FLOW MODELS WITH ANISOTROPIC KERNEL [J].
Chiarello, Felisia Angela ;
Goatin, Paola .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2018, 52 (01) :163-180
[9]   IBVPs for scalar conservation laws with time discontinuous fluxes [J].
Colombo, Rinaldo M. ;
Rossi, Elena .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) :1463-1479
[10]   RIGOROUS ESTIMATES ON BALANCE LAWS IN BOUNDED DOMAINS [J].
Colombo, Rinaldo M. ;
Rossi, Elena .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (04) :906-944