Deformations of filiform Lie algebras and superalgebras

被引:14
|
作者
Khakimdjanov, Yu. [2 ]
Navarro, R. M. [1 ]
机构
[1] Univ Extremadura, Dpto Matemat, Caceres, Spain
[2] Univ Haute Alsace, Lab Math & Applicat, Mulhouse, France
关键词
Lie algebras; Lie superalgebras; Cohomology; Deformation; Nilpotent; Filiform; COHOMOLOGY;
D O I
10.1016/j.geomphys.2010.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give the dimension and an algorithm to compute a basis of all the infinitesimal deformations of L-n on the variety of (n + 1)-dimensional Lie algebra laws Ln+1. Recall that every filiform Lie algebra can be obtained by a deformation of L-n [Vergne (1970) [1]]. In the same way as filiform Lie algebras, all filiform Lie superalgebras can be obtained by infinitesimal deformations of the model Lie superalgebra L-n.m. In this paper we will also study the infinitesimal deformations of L-n.m which lie in Hom(L-n Lambda L-n, L-n), giving the dimension and an algorithm to compute a basis of them. One could think that the two sets of deformations aforementioned, one for Lie algebras and another for Lie superalgebras, can be the same. But this assumption is not correct, in particular we will prove that the set of deformations for Lie superalgebras is a strict subset of the set of deformations for Lie algebras. Thus, we will give a necessary and sufficient condition for a cocycle of the Lie algebra L-n to be a cocycle of the Lie superalgebra L-n.m. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1156 / 1169
页数:14
相关论文
共 50 条
  • [21] Completeness of quasi-filiform Lie algebras
    Almaraz Luengo, E.
    Ancochea Bermudez, J. M.
    Garcia Vergnolle, L.
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05) : 582 - 595
  • [22] On Naturally Graded Lie and Leibniz Superalgebras
    Camacho, L. M.
    Navarro, R. M.
    Sanchez, J. M.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3411 - 3435
  • [23] Lie superalgebras based on Heisenberg Lie algebras
    Campa, L.
    Peniche, R.
    Salgado, G.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08) : 1553 - 1562
  • [24] A complete description of all the infinitesimal deformations of the Lie superalgebra Ln,m
    Khakimdjanov, Yu
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (01) : 131 - 141
  • [25] Biderivations of Hom-Lie Algebras and Superalgebras
    Yuan, La Mei
    Li, Jia Xin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2337 - 2358
  • [26] A new method for classifying complex filiform Lie algebras
    Boza, L
    Fedriani, EM
    Núñez, J
    APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (2-3) : 169 - 175
  • [27] An algorithm to obtain laws of families of filiform Lie algebras
    Gomez, JR
    Jimenez-Merchan, A
    Nunez-Valdes, J
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 279 (1-3) : 1 - 12
  • [28] Relations among invariants of complex filiform Lie algebras
    Echarte, FJ
    Núñez, J
    Ramírez, F
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 365 - 376
  • [29] Totally Geodesic Subalgebras of Filiform Nilpotent Lie Algebras
    Cairns, Grant
    Galic, Ana Hinic
    Nikolayevsky, Yuri
    JOURNAL OF LIE THEORY, 2013, 23 (04) : 1051 - 1074
  • [30] Infinitesimal deformations of the lie superalgebra Ln,m
    Gomez, J. R.
    Khakimdjanov, Yu.
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (07) : 849 - 859