A Heliospheric Imager for Deep Space: Lessons Learned from Helios, SMEI, and STEREO

被引:18
作者
Jackson, B. V. [1 ]
Buffington, A. [1 ]
Hick, P. P. [1 ,3 ]
Bisi, M. M. [1 ,2 ]
Clover, J. M. [1 ]
机构
[1] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[2] Inst Math & Phys Sci, Aberystwyth SY23 3BZ, Ceredigion, Wales
[3] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Instrumentation and data management; Coronal mass ejections; interplanetary; Solar wind disturbances; Plasma physics; CORONAL MASS EJECTIONS; INTERPLANETARY SCINTILLATION OBSERVATIONS; STRAY-LIGHT REDUCTION; SOLAR-WIND; ZODIACAL LIGHT; TOMOGRAPHY; SUN; RECONSTRUCTIONS; PROPAGATION; BRIGHTNESS;
D O I
10.1007/s11207-010-9579-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The zodiacal-light photometers on the twin Helios spacecraft, the Solar Mass Ejection Imager (SMEI) on the Coriolis spacecraft, and the Heliospheric Imagers (HIs) on the Solar-TErrestrial RElations Observatory (STEREO) twin spacecraft all point the way to optimizing future remote-sensing Thomson-scattering observations from deep space. Such data could be provided by wide-angle viewing instruments on Solar Orbiter, Solar Probe, or other deep-space probes. Here, we present instrument specifications required for a successful heliospheric imager, and the measurements and data-processing steps that make the best use of this remote-sensing system. When this type of instrument is properly designed and calibrated, its data are capable of determining zodiacal-dust properties, and of three-dimensional reconstructions of heliospheric electron density over large volumes of the inner heliosphere. Such systems can measure fundamental properties of the inner heliospheric plasma, provide context for the in-situ monitors on board spacecraft, and enable physics-based analyses of this important segment of the Sun-spacecraft connection.
引用
收藏
页码:257 / 275
页数:19
相关论文
共 92 条
[1]   MICROTURBULENCE IN SOLAR-WIND STREAMS [J].
ANANTHAKRISHNAN, S ;
COLES, WA ;
KAUFMAN, JJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (NA11) :6025-6030
[2]   Heliospheric tomography using interplanetary scintillation observations 3. Correlation between speed and electron density fluctuations in the solar wind [J].
Asai, K ;
Kojima, M ;
Tokumaru, M ;
Yokobe, A ;
Jackson, BV ;
Hick, PL ;
Manoharan, PK .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A2) :1991-2001
[3]  
BEHANNON KW, 1991, J GEOPHYS RES, V21, P213
[4]  
Billings Donald E., 1966, A guide to the solar corona
[5]   3-D reconstructions of the early-November 2004 CDAW geomagnetic storms: analysis of Ooty IPS speed and density data [J].
Bisi, M. M. ;
Jackson, B. V. ;
Clover, J. M. ;
Manoharan, P. K. ;
Tokumaru, M. ;
Hick, P. P. ;
Buffington, A. .
ANNALES GEOPHYSICAE, 2009, 27 (12) :4479-4489
[6]   Low-Resolution STELab IPS 3D Reconstructions of the Whole Heliosphere Interval and Comparison with in-Ecliptic Solar Wind Measurements from STEREO and Wind Instrumentation [J].
Bisi, M. M. ;
Jackson, B. V. ;
Buffington, A. ;
Clover, J. M. ;
Hick, P. P. ;
Tokumaru, M. .
SOLAR PHYSICS, 2009, 256 (1-2) :201-217
[7]  
Bisi M.M., 2007, ADV GEOSCI, V14, P161
[8]  
Bisi M. M., 2008, ADV GEOSCIENCES, V21, P33
[9]  
BISI MM, 2008, J GEOPHYS RES, V113
[10]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402