Singularity probabilities for random matrices over finite fields

被引:14
|
作者
Kahn, J [1 ]
Komlós, J
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] Rutgers State Univ, RUTCOR, New Brunswick, NJ 08903 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 02期
关键词
D O I
10.1017/S096354830100462X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fix q and let M-n be an n x n matrix with entries drawn independently from the finite field F-q according to some distribution mu (n). It is shown that, except in certain pathological cases, the probability that M-n, is nonsingular is asymptotically the same as for uniform entries; that is, Pr(M-n is nonsingular) --> Pi (i greater than or equal to1)(1-q(-1)) as n --> infinity.
引用
收藏
页码:137 / 157
页数:21
相关论文
共 50 条
  • [31] Singularity of discrete random matrices
    Jain, Vishesh
    Sah, Ashwin
    Sawhney, Mehtaab
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (05) : 1160 - 1218
  • [32] Singularity of discrete random matrices
    Vishesh Jain
    Ashwin Sah
    Mehtaab Sawhney
    Geometric and Functional Analysis, 2021, 31 : 1160 - 1218
  • [33] ON THE SINGULARITY OF RANDOM COMBINATORIAL MATRICES
    Nguyen, Hoi H.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) : 447 - 458
  • [34] Random matrix theory over finite fields
    Fulman, J
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (01) : 51 - 85
  • [35] ON RANDOM POLYNOMIALS OVER FINITE-FIELDS
    ARRATIA, R
    BARBOUR, AD
    TAVARE, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 114 : 347 - 368
  • [36] Random Krylov spaces over finite fields
    Brent, RP
    Gao, SH
    Lauder, AGB
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (02) : 276 - 287
  • [37] DISTRIBUTION OF RANK OF RANDOM MATRICES OVER A FINITE FIELD
    BALAKIN, GV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (04): : 594 - &
  • [38] EQUIVALENCE CLASSES OF MATRICES OVER FINITE-FIELDS
    MULLEN, GL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 27 (OCT) : 61 - 68
  • [39] ON THE SUMMATION OF FRACTIONAL POWERS OF MATRICES OVER FINITE FIELDS
    Lima, Juliano B.
    Campello de Souza, Ricardo M.
    OPERATORS AND MATRICES, 2016, 10 (01): : 209 - 221
  • [40] Jordan–Landau theorem for matrices over finite fields
    Cheong, Gilyoung
    Lee, Jungin
    Nam, Hayan
    Yu, Myungjun
    Linear Algebra and Its Applications, 2022, 655 : 100 - 128