Singularity probabilities for random matrices over finite fields

被引:14
|
作者
Kahn, J [1 ]
Komlós, J
机构
[1] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
[2] Rutgers State Univ, RUTCOR, New Brunswick, NJ 08903 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2001年 / 10卷 / 02期
关键词
D O I
10.1017/S096354830100462X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fix q and let M-n be an n x n matrix with entries drawn independently from the finite field F-q according to some distribution mu (n). It is shown that, except in certain pathological cases, the probability that M-n, is nonsingular is asymptotically the same as for uniform entries; that is, Pr(M-n is nonsingular) --> Pi (i greater than or equal to1)(1-q(-1)) as n --> infinity.
引用
收藏
页码:137 / 157
页数:21
相关论文
共 50 条
  • [1] On the singularity of generalised Vandermonde matrices over finite fields
    Shparlinski, IE
    FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (02) : 193 - 199
  • [2] GOOD RANDOM MATRICES OVER FINITE FIELDS
    Yang, Shengtian
    Honold, Thomas
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2012, 6 (02) : 203 - 227
  • [3] Properties of sparse random matrices over finite fields
    Alamino, Roberto C.
    Saad, David
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [4] The rank of sparse random matrices over finite fields
    Blomer, J
    Karp, R
    Welzl, E
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (04) : 407 - 419
  • [5] Some new results in random matrices over finite fields
    Luh, Kyle
    Meehan, Sean
    Nguyen, Hoi H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04): : 1209 - 1252
  • [6] The determinant of random power series matrices over finite fields
    Abdel-Ghaffar, KAS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) : 139 - 144
  • [7] On the Maximum Probability of Full Rank of Random Matrices over Finite Fields
    Delic, Marija
    Ivetic, Jelena
    MATHEMATICS, 2025, 13 (03)
  • [8] HITTING PROBABILITIES OF GAUSSIAN RANDOM FIELDS AND COLLISION OF EIGENVALUES OF RANDOM MATRICES
    Lee, Cheuk Yin
    Song, Jian
    Xiao, Yimin
    Yuan, Wangjun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) : 4273 - 4299
  • [9] Some probabilities for eigenvalues of matrices with entries in finite fields
    Gerth, F
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 269 - 275
  • [10] STEIN'S METHOD AND THE RANK DISTRIBUTION OF RANDOM MATRICES OVER FINITE FIELDS
    Fulman, Jason
    Goldstein, Larry
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1274 - 1314