Neural-network quantum state tomography

被引:33
作者
Koutny, Dominik [1 ]
Motka, Libor [1 ]
Hradil, Zdenek [1 ]
Rehacek, Jaroslav [1 ]
Sanchez-Soto, Luis L. [2 ,3 ]
机构
[1] Palacky Univ, Dept Opt, 17 Iistopadu 12, Olomouc 77146, Czech Republic
[2] Univ Complutense, Fac Fis, Dept Opt, Madrid 28040, Spain
[3] Max Planck Inst Phys Lichts, D-91058 Erlangen, Germany
关键词
D O I
10.1103/PhysRevA.106.012409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We revisit the application of neural networks to quantum state tomography. We confirm that the positivity constraint can be successfully implemented with trained networks that convert outputs from standard feedforward neural networks to valid descriptions of quantum states. Any standard neural-network architecture can be adapted with our method. Our results open possibilities to use state-of-the-art deep-learning methods for quantum state reconstruction under various types of noise.
引用
收藏
页数:8
相关论文
共 82 条
[1]   Classification and reconstruction of optical quantum states with deep neural networks [J].
Ahmed, Shahnawaz ;
Sanchez Munoz, Carlos ;
Nori, Franco ;
Kockum, Anton Frisk .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[2]   Quantum State Tomography with Conditional Generative Adversarial Networks [J].
Ahmed, Shahnawaz ;
Sanchez Munoz, Carlos ;
Nori, Franco ;
Kockum, Anton Frisk .
PHYSICAL REVIEW LETTERS, 2021, 127 (14)
[3]   Adaptive Compressive Tomography with No a priori Information [J].
Ahn, D. ;
Teo, Y. S. ;
Jeong, H. ;
Bouchard, F. ;
Hufnagel, F. ;
Karimi, E. ;
Koutny, D. ;
Rehacek, J. ;
Hradil, Z. ;
Leuchs, G. ;
Sanchez-Soto, L. L. .
PHYSICAL REVIEW LETTERS, 2019, 122 (10)
[4]   Random Bures mixed states and the distribution of their purity [J].
Al Osipov, V. ;
Sommers, H-J ;
Zyczkowski, K. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (05)
[5]  
[Anonymous], TensorFlow: Large-scale machine learning on heterogeneous systems
[6]  
[Anonymous], About Us
[7]  
[Anonymous], 1974, SOLVING LEAST SQUARE
[8]  
[Anonymous], 1998, Fundamentals of Statistical Signal Processing Volume I: Estimation Theory
[9]  
[Anonymous], 2016, DEEP LEARNING
[10]   An invitation to quantum tomography [J].
Artiles, LM ;
Gill, RD ;
Guta, MI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :109-134