Sech-polynomial travelling solitary-wave solutions of odd-order generalized KdV equations

被引:38
作者
Parkes, EJ [1 ]
Zhu, Z
Duffy, BR
Huang, HC
机构
[1] Univ Strathclyde, Dept Math, Livingstone Tower,Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Peoples R China
关键词
solitary wave; generalized KdV equation;
D O I
10.1016/S0375-9601(98)00662-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A (2m + 1)th-order generalized KdV equation is considered, where m is a positive integer. Four new explicit travelling solitary-wave solutions are obtained for the case m = 4. The case of arbitrary m greater than or equal to 3 is considered; it is shown that, subject to certain restrictions on the coefficients in the equation, there are always at least two sech-polynomial type solutions. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 9 条
[1]   Travelling solitary wave solutions to a seventh-order generalized KdV equation [J].
Duffy, BR ;
Parkes, EJ .
PHYSICS LETTERS A, 1996, 214 (5-6) :271-272
[2]   EXACT SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT ALGEBRAIC-METHOD [J].
HEREMAN, W ;
BANERJEE, PP ;
KORPEL, A ;
ASSANTO, G ;
VANIMMERZEELE, A ;
MEERPOEL, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05) :607-628
[3]  
MA WX, 1993, PHYS LETT A, V180, P221, DOI 10.1016/0375-9601(93)90699-Z
[4]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[5]   An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations [J].
Parkes, EJ ;
Duffy, BR .
COMPUTER PHYSICS COMMUNICATIONS, 1996, 98 (03) :288-300
[6]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[7]   EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF GENERALIZED ODD-ORDER KDV EQUATIONS [J].
YANG, ZJ .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (04) :641-647
[8]   TRAVELING-WAVE SOLUTIONS TO NONLINEAR EVOLUTION AND WAVE-EQUATIONS [J].
YANG, ZJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08) :2837-2855
[9]  
ZHU Z, 1996, ACTA PHYS SINICA, V45, P1777