Few-Shot Learning Geometric Ensemble for Multi-label Classification of Chest X-Rays

被引:5
作者
Moukheiber, Dana [1 ]
Mahindre, Saurabh [2 ]
Moukheiber, Lama [1 ]
Moukheiber, Mira [1 ]
Wang, Song [3 ]
Ma, Chunwei [2 ]
Shih, George [4 ]
Peng, Yifan [4 ]
Gao, Mingchen [2 ]
机构
[1] MIT, Cambridge, MA 02138 USA
[2] SUNY Buffalo, Buffalo, NY USA
[3] Univ Texas Austin, Austin, TX USA
[4] Weill Cornell Med, New York, NY USA
来源
DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022) | 2022年 / 13567卷
基金
美国国家科学基金会;
关键词
Few-shot learning; Multi-label image classification; Chest X-ray; Ensemble learning; Computational geometry;
D O I
10.1007/978-3-031-17027-0_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to identify uncommon cardiothoracic diseases and patterns on chest X-ray images. Training a machine learning model to classify rare diseases with multi-label indications is challenging without sufficient labeled training samples. Our model leverages the information from common diseases and adapts to perform on less common mentions. We propose to use multi-label few-shot learning (FSL) schemes including neighborhood component analysis loss, generating additional samples using distribution calibration and fine-tuning based on multi-label classification loss. We utilize the fact that the widely adopted nearest neighbor-based FSL schemes like ProtoNet are Voronoi diagrams in feature space. In our method, the Voronoi diagrams in the features space generated from multi-label schemes are combined into our geometric DeepVoro Multi-label ensemble. The improved performance in multi-label few-shot classification using the multi-label ensemble is demonstrated in our experiments (The code is publicly available at https://github.com/Saurabh7/Few-shot- learning-multilabel-cxray).
引用
收藏
页码:112 / 122
页数:11
相关论文
共 23 条
  • [11] MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
    Johnson, Alistair E. W.
    Pollard, Tom J.
    Berkowitz, Seth J.
    Greenbaum, Nathaniel R.
    Lungren, Matthew P.
    Deng, Chih-ying
    Mark, Roger G.
    Horng, Steven
    [J]. SCIENTIFIC DATA, 2019, 6 (1)
  • [12] Laenen S, 2021, ADV NEUR IN, V34
  • [13] Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities
    Lakhani, Paras
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 460 - 468
  • [14] Ma C., 2022, INT C LEARNING REPRE
  • [15] Ma C., 2022, arXiv
  • [16] Rajpurkar P, 2017, Arxiv, DOI arXiv:1711.05225
  • [17] A scoping review of artificial intelligence applications in thoracic surgery
    Seastedt, Kenneth P.
    Moukheiber, Dana
    Mahindre, Saurabh A.
    Thammineni, Chaitanya
    Rosen, Darin T.
    Watkins, Ammara A.
    Hashimoto, Daniel A.
    Hoang, Chuong D.
    Kpodonu, Jacques
    Celi, Leo A.
    [J]. EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 2022, 61 (02) : 239 - 248
  • [18] Snell J, 2017, ADV NEUR IN, V30
  • [19] Automated abnormality classification of chest radiographs using deep convolutional neural networks
    Tang, Yu-Xing
    Tang, You-Bao
    Peng, Yifan
    Yan, Ke
    Bagheri, Mohammadhadi
    Redd, Bernadette A.
    Brandon, Catherine J.
    Lu, Zhiyong
    Han, Mei
    Xiao, Jing
    Summers, Ronald M.
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [20] Wang S, 2022, Arxiv, DOI arXiv:2204.09599