On the Semantic Relationship between Datalog and Description Logics

被引:0
作者
Kroetzsch, Markus [1 ]
Rudolph, Sebastian [2 ]
Schmitt, Peter H. [3 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 2JD, England
[2] Karlsruhe Inst Technol, Inst AIFB, D-76021 Karlsruhe, Germany
[3] Karlsruhe Inst Technol, Inst Theoret Comp Sci, D-76021 Karlsruhe, Germany
来源
WEB REASONING AND RULE SYSTEMS | 2010年 / 6333卷
基金
英国工程与自然科学研究理事会;
关键词
OWL; RULES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Translations to (first-order) datalog have been used in a number of inferencing techniques for description logics (DLs), yet the relationship between the semantic expressivities of function-free Horn logic and DL is understood only poorly. Although Description Logic Programs (DLP) have been described as DLs in the "expressive intersection" of DL and datalog, it is unclear what an intersection of two syntactically incomparable logics is, even if both have a first-order logic semantics. In this work, we offer a characterisation for DL fragments that can be expressed, in a concrete sense, in datalog. We then determine the largest such fragment for the DL ALC and provide an outlook on the extension of our methods to more expressive DLs.
引用
收藏
页码:88 / +
页数:3
相关论文
共 29 条
  • [1] Modal languages and bounded fragments of predicate logic
    Andreka, H
    Nemeti, I
    van Benthem, J
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 1998, 27 (03) : 217 - 274
  • [2] [Anonymous], 1990, STUDIES LOGIC FDN MA
  • [3] [Anonymous], 2007, DESCRIPTION LOGIC HD, DOI DOI 10.1017/CBO9780511711787
  • [4] Baget J., 2010, P 12 INT C PRINCIPLE
  • [5] BARAL, 1994, J LOGIC PROGRAM, V19, P73
  • [6] Cali A., 2009, PODS
  • [7] Complexity and expressive power of logic programming
    Dantsin, E
    Eiter, T
    Gottlob, G
    Voronkov, A
    [J]. ACM COMPUTING SURVEYS, 2001, 33 (03) : 374 - 425
  • [8] AL-log: Integrating datalog and description logics
    Donini, FM
    Lenzerini, M
    Nardi, D
    Schaerf, A
    [J]. JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 1998, 10 (03) : 227 - 252
  • [9] Eiter T., 2004, P 9 INT C PRINC KNOW, P141
  • [10] EITER T, 2005, P 19 INT JOINT C ART