Decomposition of pointwise finite-dimensional persistence modules

被引:86
作者
Crawley-Boevey, William [1 ]
机构
[1] Univ Leeds, Dept Pure Math, Leeds LS2 9JT, W Yorkshire, England
关键词
Persistence module; persistent homology;
D O I
10.1142/S0219498815500668
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a persistence module (for a totally ordered indexing set) consisting of finite-dimensional vector spaces is a direct sum of interval modules. The result extends to persistence modules with the descending chain condition on images and kernels.
引用
收藏
页数:8
相关论文
共 11 条
[1]  
[Anonymous], ARXIV12073674
[2]  
Carlsson G., 2004, Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, DOI [DOI 10.1145/1057432.1057449, DOI 10.1142/S0218654305000761, 10.1142/S0218654305000761]
[3]   Persistence stability for geometric complexes [J].
Chazal, Frederic ;
de Silva, Vin ;
Oudot, Steve .
GEOMETRIAE DEDICATA, 2014, 173 (01) :193-214
[4]   Proximity of Persistence Modules and their Diagrams [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Glisse, Marc ;
Guibas, Leonidas J. ;
Oudot, Steve Y. .
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, :237-246
[5]   LOCALLY FINITELY PRESENTED ADDITIVE CATEGORIES [J].
CRAWLEYBOEVEY, W .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) :1641-1674
[6]   Barcodes: The persistent topology of data [J].
Ghrist, Robert .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (01) :61-75
[7]  
Grothendieck A., 1961, Publ. Math-Paris, V11, P5
[8]  
Lesnick M, 2011, ARXIV11065305
[9]   INDECOMPOSABLE REPRESENTATIONS OF DIHEDRAL 2-GROUPS [J].
RINGEL, CM .
MATHEMATISCHE ANNALEN, 1975, 214 (01) :19-34
[10]  
WEBB C, 1985, P AM MATH SOC, V94, P565