Parrondo's game using a discrete-time quantum walk

被引:31
作者
Chandrashekar, C. M. [1 ]
Banerjee, Subhashish [2 ,3 ]
机构
[1] Inst Math Sci, Ctr Quantum Sci, Chennai 600113, Tamil Nadu, India
[2] Chennai Math Inst, Siruseri 603103, India
[3] Indian Inst Technol Rajasthan, Jodhpur 342011, Rajasthan, India
关键词
Quantum walks; Quantum algorithm; Game theory; Parrondo's game; Ratchets; Quantum coin operations; TRANSPORT;
D O I
10.1016/j.physleta.2011.02.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new form of a Parrondo game using discrete-time quantum walk on a line. The two players A and B with different quantum coins operators, individually losing the game can develop a strategy to emerge as joint winners by using their coins alternatively, or in combination for each step of the quantum walk evolution. We also present a strategy for a player A (B) to have a winning probability more than player B (A). Significance of the game strategy in information theory and physical applications are also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1553 / 1558
页数:6
相关论文
共 64 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]   Control systems with stochastic feedback [J].
Allison, A ;
Abbott, D .
CHAOS, 2001, 11 (03) :715-724
[3]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[4]   QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS [J].
Ambainis, Andris .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :507-518
[5]   Discrete-time ratchets, the Fokker-Planck equation and Parrondo's paradox [J].
Amengual, P ;
Allison, A ;
Toral, R ;
Abbott, D .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2048) :2269-2284
[6]  
[Anonymous], 1996, 28 ANN ACM S THEORY
[7]  
[Anonymous], 200043 DIMACS
[8]  
[Anonymous], 2001, PROC 33 ACM SOTC
[9]   THE EVOLUTION OF COOPERATION [J].
AXELROD, R ;
HAMILTON, WD .
SCIENCE, 1981, 211 (4489) :1390-1396
[10]   Discrete Single-Photon Quantum Walks with Tunable Decoherence [J].
Broome, M. A. ;
Fedrizzi, A. ;
Lanyon, B. P. ;
Kassal, I. ;
Aspuru-Guzik, A. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)