IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm

被引:0
|
作者
Ma, Borong [1 ]
Hua, Jun [1 ]
Ma, Zhixin [1 ]
Li, Xianbo [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
关键词
Particle swarm optimization algorithm; Multi-objective optimization; Acceleration coefficients; Drift motion; Mutation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An improved multi-objective particle swarm optimization (IMOPSO) is presented because of the different demand for decision and state variables in engineering optimizations. IMOPSO adopts a new method of dynamic change about acceleration coefficients based on sine transform to improve the ability of global search in early period and the local search ability in the last runs of the algorithm. To expand the search area of particles, a drift motion is acted on the personal best positions. Moreover, a dynamic mutation strategy in which the mutation rates are generated by modified Levy flight is used to make the particles escape from the local optimal value. Finally, the efficiency of this algorithm is verified with test functions and the experimental results manifest that the IMOPSO is superior to MOPSO algorithm in wide perspectives like obtaining a better convergence to the true Pareto fronts with good diversity and uniformity.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [21] Multi-Objective Mean Particle Swarm Optimization Algorithm
    Pei, Shengyu
    Zhou, Yongquan
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3315 - 3319
  • [22] A simplified multi-objective particle swarm optimization algorithm
    Trivedi, Vibhu
    Varshney, Pushkar
    Ramteke, Manojkumar
    SWARM INTELLIGENCE, 2020, 14 (02) : 83 - 116
  • [23] Adaptive Multi-objective Particle Swarm Optimization algorithm
    Tripathi, P. K.
    Bandyopadhyay, Sanghamitra
    Pal, S. K.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2281 - +
  • [24] Optimization of Multi-objective Micro-grid Based on Improved Particle Swarm Optimization Algorithm
    Zhang, Jian
    Gan, Yang
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [25] Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm
    Kong, Zhengyu
    Wu, Duanpo
    Jin, Xinyu
    Cen, Shuwei
    Dong, Fang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (04) : 1568 - 1589
  • [26] A Multi-Objective Chaotic Particle Swarm Optimization Algorithm Based on Improved Inertial Weights
    Pan, Zhi-yuan
    Zhang, Da-min
    Liu, Dong
    Yang, Jun
    Chen, Juan-min
    2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND NETWORK TECHNOLOGY (CCNT 2018), 2018, 291 : 14 - 21
  • [27] An improved multi-objective particle swarm optimization algorithm and its application in vehicle scheduling
    Xu, Wenxing
    Wang, Wanhong
    He, Qian
    Liu, Cai
    Zhuang, Jun
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4230 - 4235
  • [28] An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
    Rajeshkumar, G.
    Kumar, M. Vinoth
    Kumar, K. Sailaja
    Bhatia, Surbhi
    Mashat, Arwa
    Dadheech, Pankaj
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1187 - 1200
  • [29] Research on improved multi-objective particle swarm optimization algorithms
    Zhao, Duo
    Jin, Weidong
    APPLIED ARTIFICIAL INTELLIGENCE, 2006, : 231 - +
  • [30] Application and optimization design of improved multi-objective particle swarm
    Zhang, Lan-Yong
    Liu, Sheng
    Yu, Da-Yong
    Dianbo Kexue Xuebao/Chinese Journal of Radio Science, 2011, 26 (04): : 789 - 795