IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm

被引:0
作者
Ma, Borong [1 ]
Hua, Jun [1 ]
Ma, Zhixin [1 ]
Li, Xianbo [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
来源
PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT) | 2016年
关键词
Particle swarm optimization algorithm; Multi-objective optimization; Acceleration coefficients; Drift motion; Mutation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An improved multi-objective particle swarm optimization (IMOPSO) is presented because of the different demand for decision and state variables in engineering optimizations. IMOPSO adopts a new method of dynamic change about acceleration coefficients based on sine transform to improve the ability of global search in early period and the local search ability in the last runs of the algorithm. To expand the search area of particles, a drift motion is acted on the personal best positions. Moreover, a dynamic mutation strategy in which the mutation rates are generated by modified Levy flight is used to make the particles escape from the local optimal value. Finally, the efficiency of this algorithm is verified with test functions and the experimental results manifest that the IMOPSO is superior to MOPSO algorithm in wide perspectives like obtaining a better convergence to the true Pareto fronts with good diversity and uniformity.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 14 条
[1]   A Levy flight for light [J].
Barthelemy, Pierre ;
Bertolotti, Jacopo ;
Wiersma, Diederik S. .
NATURE, 2008, 453 (7194) :495-498
[2]   Improved multi-objective particle swarm optimization with preference strategy for optimal DG integration into the distribution system [J].
Cheng, Shan ;
Chen, Min-You ;
Fleming, Peter J. .
NEUROCOMPUTING, 2015, 148 :23-29
[3]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[4]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[5]   An Experimental Comparison of MultiObjective Algorithms: NSGA-II and OMOPSO [J].
Cortes Godinez, Adriana ;
Mancilla Espinosa, Luis Ernesto ;
Mezura Montes, Efren .
2010 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2010), 2010, :28-33
[6]   Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems [J].
Huang, VL ;
Suganthan, PN ;
Liang, JJ .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2006, 21 (02) :209-226
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]   Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].
Liang, J. J. ;
Qin, A. K. ;
Suganthan, Ponnuthurai Nagaratnam ;
Baskar, S. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (03) :281-295
[9]   On the computation of all global minimizers through particle swarm optimization [J].
Parsopoulos, KE ;
Vrahatis, MN .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :211-224
[10]  
Raquel CR, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P257