IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm

被引:0
|
作者
Ma, Borong [1 ]
Hua, Jun [1 ]
Ma, Zhixin [1 ]
Li, Xianbo [1 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
来源
PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT) | 2016年
关键词
Particle swarm optimization algorithm; Multi-objective optimization; Acceleration coefficients; Drift motion; Mutation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An improved multi-objective particle swarm optimization (IMOPSO) is presented because of the different demand for decision and state variables in engineering optimizations. IMOPSO adopts a new method of dynamic change about acceleration coefficients based on sine transform to improve the ability of global search in early period and the local search ability in the last runs of the algorithm. To expand the search area of particles, a drift motion is acted on the personal best positions. Moreover, a dynamic mutation strategy in which the mutation rates are generated by modified Levy flight is used to make the particles escape from the local optimal value. Finally, the efficiency of this algorithm is verified with test functions and the experimental results manifest that the IMOPSO is superior to MOPSO algorithm in wide perspectives like obtaining a better convergence to the true Pareto fronts with good diversity and uniformity.
引用
收藏
页码:376 / 380
页数:5
相关论文
共 50 条
  • [1] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [2] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [3] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [4] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [5] An improved multi-objective particle swarm optimization algorithm and its application in vehicle scheduling
    Xu, Wenxing
    Wang, Wanhong
    He, Qian
    Liu, Cai
    Zhuang, Jun
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4230 - 4235
  • [6] An Improved Multi-Objective Particle Swarm Optimization Algorithm Based on Angle Preference
    Ling, Qing-Hua
    Tang, Zhi-Hao
    Huang, Gan
    Han, Fei
    SYMMETRY-BASEL, 2022, 14 (12):
  • [7] A simplified multi-objective particle swarm optimization algorithm
    Trivedi, Vibhu
    Varshney, Pushkar
    Ramteke, Manojkumar
    SWARM INTELLIGENCE, 2020, 14 (02) : 83 - 116
  • [8] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55
  • [9] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116
  • [10] Optimization of Multi-objective Micro-grid Based on Improved Particle Swarm Optimization Algorithm
    Zhang, Jian
    Gan, Yang
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955