INVARIANT MEASURE FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS IN UNBOUNDED 2D DOMAINS

被引:73
作者
Brzeniak, Zdzislaw [1 ]
Motyl, Elzbieta [2 ]
Ondrejat, Martin [3 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Lodz, Fac Math & Comp Sci, PL-91238 Lodz, Poland
[3] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, CZ-18208 Prague 08, Czech Republic
关键词
Invariant measure; bw-Feller semigroup; stochastic Navier-Stokes equations; EVOLUTION-EQUATIONS; WAVE-EQUATIONS; STATIONARY SOLUTIONS; BANACH-SPACES; DRIVEN; EXISTENCE; MARTINGALE; VALUES; NOISE; PERTURBATION;
D O I
10.1214/16-AOP1133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Building upon a recent work by two of the authors and J. Seidler on bw-Feller property for stochastic nonlinear beam and wave equations, we prove the existence of an invariant measure to stochastic 2-D Navier-Stokes (with multiplicative noise) equations in unbounded domains. This answers an open question left after the first author and Y. Li proved a corresponding result in the case of an additive noise.
引用
收藏
页码:3145 / 3201
页数:57
相关论文
共 45 条
[1]  
Albeverio S., 1989, RES NOTES MATH, V200, P1
[2]   Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients [J].
Albeverio, Sergio ;
Brzezniak, Zdzislaw ;
Wu, Jiang-Lun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :309-322
[3]  
[Anonymous], 1995, SELECTED PROBLEMS MA
[4]  
[Anonymous], LONDON MATH SOC LECT
[5]  
[Anonymous], 1981, N HOLLAND MATH LIB
[6]  
[Anonymous], 1992, ENCY MATH ITS APPL, DOI DOI 10.1017/CBO9780511666223
[7]  
AVEZ A, 1968, CR ACAD SCI A MATH, V266, P610
[8]   Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations [J].
Ball, JM .
JOURNAL OF NONLINEAR SCIENCE, 1997, 7 (05) :475-502
[9]   Weak Solutions to Stochastic Wave Equations with Values in Riemannian Manifolds [J].
Brzezniak, Z. ;
Ondrejat, M. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (09) :1624-1653
[10]   Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces [J].
Brzezniak, Z ;
Gatarek, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :187-225