Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems

被引:269
作者
Banuls, M. C. [1 ]
Cirac, J. I. [1 ]
Hastings, M. B. [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Calif Santa Barbara, Stn Q, Santa Barbara, CA 93106 USA
关键词
MODELS; STATES; CHAOS;
D O I
10.1103/PhysRevLett.106.050405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When a nonintegrable system evolves out of equilibrium for a long time, local observables are in general expected to attain stationary expectation values, independent of the details of the initial state. But the thermalization of a closed quantum system is not yet well understood. Here we show that it presents indeed a much richer phenomenology than its classical counterpart. Using a new numerical technique, we identify two distinct regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well known in classical systems, shows convergence to thermal values only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.
引用
收藏
页数:4
相关论文
共 24 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[3]   Thermalization of quantum fields from time-reversal invariant evolution equations [J].
Berges, J ;
Cox, J .
PHYSICS LETTERS B, 2001, 517 (3-4) :369-374
[4]   Threshold for Chaos and Thermalization in the One-Dimensional Mean-Field Bose-Hubbard Model [J].
Cassidy, Amy C. ;
Mason, Douglas ;
Dunjko, Vanja ;
Olshanii, Maxim .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[5]   Exact relaxation in a class of nonequilibrium quantum lattice systems [J].
Cramer, M. ;
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[6]   QUANTUM STATISTICAL-MECHANICS IN A CLOSED SYSTEM [J].
DEUTSCH, JM .
PHYSICAL REVIEW A, 1991, 43 (04) :2046-2049
[7]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[8]   Probing local relaxation of cold atoms in optical superlattices [J].
Flesch, A. ;
Cramer, M. ;
McCulloch, I. P. ;
Schollwoeck, U. ;
Eisert, J. .
PHYSICAL REVIEW A, 2008, 78 (03)
[9]   Non-equilibrium coherence dynamics in one-dimensional Bose gases [J].
Hofferberth, S. ;
Lesanovsky, I. ;
Fischer, B. ;
Schumm, T. ;
Schmiedmayer, J. .
NATURE, 2007, 449 (7160) :324-+
[10]   SIMPLE-MODELS OF QUANTUM CHAOS - SPECTRUM AND EIGENFUNCTIONS [J].
IZRAILEV, FM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 196 (5-6) :299-392