A DELAUNAY-TYPE CLASSIFICATION RESULT FOR PRESCRIBED MEAN CURVATURE SURFACES IN M2(κ) x R

被引:4
作者
Bueno, Antonio [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
prescribed mean curvature; product space; rotational surface; existence of spheres; Delaunay-type classification; HYPERSURFACES; UNIQUENESS; SPHERES;
D O I
10.2140/pjm.2021.313.45
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study immersed surfaces in the product spaces M-2(kappa) x R, whose mean curvature is given as a C-1 function depending on their angle function. This class of surfaces extends widely, among others, the well-known theory of surfaces with constant mean curvature. In this paper we give necessary and sufficient conditions for the existence of prescribed mean curvature spheres, and we describe complete surfaces of revolution proving that they behave as the Delaunay surfaces of CMC type.
引用
收藏
页码:45 / 74
页数:31
相关论文
共 16 条
[1]   A Hopf differential for constant mean curvature surfaces in S2 x R and H2 x R [J].
Abresch, U ;
Rosenberg, H .
ACTA MATHEMATICA, 2004, 193 (02) :141-174
[2]  
Alexandrov A. D., 1956, VESTNIK LENINGRAD U, V11, P341
[3]   THE GLOBAL GEOMETRY OF SURFACES WITH PRESCRIBED MEAN CURVATURE IN R3 [J].
Bueno, Antonio ;
Galvez, Jose A. ;
Mira, Pablo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) :4437-4467
[4]   Rotational hypersurfaces of prescribed mean curvature [J].
Bueno, Antonio ;
Galvez, Jose A. ;
Mira, Pablo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (05) :2394-2413
[5]  
Bueno A, 2018, J GEOM, V109, DOI 10.1007/s00022-018-0447-x
[6]   Translating solitons in Riemannian products [J].
de Lira, Jorge H. S. ;
Martin, Francisco .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) :7780-7812
[7]   Rotational symmetry of Weingarten spheres in homogeneous three-manifolds [J].
Galvez, Jose A. ;
Mira, Pablo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 773 :21-66
[8]  
Gálvez JA, 2020, J DIFFER GEOM, V116, P459
[9]   Convex hypersurfaces of prescribed curvatures [J].
Guan, B ;
Guan, PF .
ANNALS OF MATHEMATICS, 2002, 156 (02) :655-673
[10]   Constant mean curvature surfaces in M2 x R [J].
Hoffman, D ;
De Lira, JHS ;
Rosenberg, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) :491-507