Machine learning applications in macromolecular X-ray crystallography

被引:12
作者
Vollmar, Melanie [1 ]
Evans, Gwyndaf [1 ,2 ]
机构
[1] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Harwell, Berks, England
[2] Rosalind Franklin Inst, Harwell Sci & Innovat Campus, Harwell, Berks, England
基金
英国生物技术与生命科学研究理事会;
关键词
Machine learning; big data; automation; macromolecular X-ray crystallography; synchrotron; structural biology; PROTEIN-STRUCTURE DETERMINATION; STRUCTURE PREDICTION; STRUCTURAL GENOMICS; PATTERN-RECOGNITION; NEURAL-NETWORKS; AUTOMATED CLASSIFICATION; SECONDARY STRUCTURE; RECEPTIVE FIELDS; DATA-COLLECTION; WEB SERVER;
D O I
10.1080/0889311X.2021.1982914
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
After more than half a century of evolution, machine learning and artificial intelligence, in general, are entering a truly exciting era of broad application in commercial and research sectors. In X-ray crystallography, and its application to structural biology, machine learning is finding a home within expert and automated systems, is forecasting experiment and data analysis outcomes, is predicting whether crystals can be grown and even generating macromolecular structures. This review provides a historical perspective on AI and machine learning, offers an introduction and guide to its application in crystallography and concludes with topical examples of how it is currently influencing macromolecular crystallography.
引用
收藏
页码:54 / 101
页数:48
相关论文
共 50 条
[21]   X-ray Diffraction Data Analysis by Machine Learning Methods-A Review [J].
Surdu, Vasile-Adrian ;
Gyorgy, Romuald .
APPLIED SCIENCES-BASEL, 2023, 13 (17)
[22]   Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography [J].
Hammersley, AP ;
Brown, K ;
Burmeister, W ;
Claustre, L ;
Gonzalez, A ;
McSweeney, S ;
Mitchell, E ;
Moy, JP ;
Svensson, SO ;
Thompson, AW .
JOURNAL OF SYNCHROTRON RADIATION, 1997, 4 :67-77
[23]   Machine learning in industrial X-ray computed tomography - a review [J].
Bellens, Simon ;
Guerrero, Patricio ;
Vandewalle, Patrick ;
Dewulf, Wim .
CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2024, 51 :324-341
[24]   Machine Learning-Based X-ray Images Classification [J].
Zlimpau-Valah, Beatrice ;
Stefaniga, Sebastian ;
Ivascu, Todor ;
Danciulescu, Raluca D. .
ADVANCES IN DIGITAL HEALTH AND MEDICAL BIOENGINEERING, VOL 3, EHB-2023, 2024, 111 :376-385
[25]   "Inverting" X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors [J].
Timoshenko, Janis ;
Frenkel, Anatoly I. .
ACS CATALYSIS, 2019, 9 (11) :10192-10211
[26]   Exploring machine learning to hardware implementations for large data rate x-ray instrumentation [J].
Rahimifar, Mohammad Mehdi ;
Wingering, Quentin ;
Gouin-Ferland, Berthie ;
Rahali, Hamza Ezzaoui ;
Granger, Charles-Etienne ;
Therrien, Audrey C. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04)
[27]   NSLS-II Biomedical Beamlines for Macromolecular Crystallography, FMX and AMX, and for X-ray Scattering, LIX: Current Developments [J].
Fuchs, M. R. ;
Sweet, R. M. ;
Berman, L. E. ;
Hendrickson, W. A. ;
Chubar, O. ;
Canestrari, N. ;
Idir, M. ;
Yang, L. ;
Schneider, D. K. .
17TH PAN-AMERICAN SYNCHROTRON RADIATION INSTRUMENTATION CONFERENCE SRI2013, 2014, 493
[28]   An X-ray Chopper for Time-resolved Crystallography [J].
Husheer, Shamus ;
Bowes, Katharine ;
Cole, Jacqueline ;
Rayment, Trevor ;
Teat, Simon ;
Warren, John ;
Bushnell-Wye, Graham ;
Raithby, Paul .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 :C136-C136
[29]   Application of machine learning to X-ray diffraction-based classification [J].
Zhao, Bi ;
Wolter, Scott ;
Greenberg, Joel A. .
ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX) III, 2018, 10632
[30]   Tackling the X-ray cargo inspection challenge using machine learning [J].
Jaccard, Nicolas ;
Rogers, Thomas W. ;
Morton, Edward J. ;
Griffin, Lewis D. .
ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX), 2016, 9847