Machine learning applications in macromolecular X-ray crystallography

被引:10
作者
Vollmar, Melanie [1 ]
Evans, Gwyndaf [1 ,2 ]
机构
[1] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Harwell, Berks, England
[2] Rosalind Franklin Inst, Harwell Sci & Innovat Campus, Harwell, Berks, England
基金
英国生物技术与生命科学研究理事会;
关键词
Machine learning; big data; automation; macromolecular X-ray crystallography; synchrotron; structural biology; PROTEIN-STRUCTURE DETERMINATION; STRUCTURE PREDICTION; STRUCTURAL GENOMICS; PATTERN-RECOGNITION; NEURAL-NETWORKS; AUTOMATED CLASSIFICATION; SECONDARY STRUCTURE; RECEPTIVE FIELDS; DATA-COLLECTION; WEB SERVER;
D O I
10.1080/0889311X.2021.1982914
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
After more than half a century of evolution, machine learning and artificial intelligence, in general, are entering a truly exciting era of broad application in commercial and research sectors. In X-ray crystallography, and its application to structural biology, machine learning is finding a home within expert and automated systems, is forecasting experiment and data analysis outcomes, is predicting whether crystals can be grown and even generating macromolecular structures. This review provides a historical perspective on AI and machine learning, offers an introduction and guide to its application in crystallography and concludes with topical examples of how it is currently influencing macromolecular crystallography.
引用
收藏
页码:54 / 101
页数:48
相关论文
共 50 条
  • [21] Calibration and application of an X-ray image intensifier/charge-coupled device detector for monochromatic macromolecular crystallography
    Hammersley, AP
    Brown, K
    Burmeister, W
    Claustre, L
    Gonzalez, A
    McSweeney, S
    Mitchell, E
    Moy, JP
    Svensson, SO
    Thompson, AW
    JOURNAL OF SYNCHROTRON RADIATION, 1997, 4 : 67 - 77
  • [22] Machine learning in industrial X-ray computed tomography - a review
    Bellens, Simon
    Guerrero, Patricio
    Vandewalle, Patrick
    Dewulf, Wim
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2024, 51 : 324 - 341
  • [23] Exploring machine learning to hardware implementations for large data rate x-ray instrumentation
    Rahimifar, Mohammad Mehdi
    Wingering, Quentin
    Gouin-Ferland, Berthie
    Rahali, Hamza Ezzaoui
    Granger, Charles-Etienne
    Therrien, Audrey C.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [24] "Inverting" X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors
    Timoshenko, Janis
    Frenkel, Anatoly I.
    ACS CATALYSIS, 2019, 9 (11): : 10192 - 10211
  • [25] An X-ray Chopper for Time-resolved Crystallography
    Husheer, Shamus
    Bowes, Katharine
    Cole, Jacqueline
    Rayment, Trevor
    Teat, Simon
    Warren, John
    Bushnell-Wye, Graham
    Raithby, Paul
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C136 - C136
  • [26] NSLS-II Biomedical Beamlines for Macromolecular Crystallography, FMX and AMX, and for X-ray Scattering, LIX: Current Developments
    Fuchs, M. R.
    Sweet, R. M.
    Berman, L. E.
    Hendrickson, W. A.
    Chubar, O.
    Canestrari, N.
    Idir, M.
    Yang, L.
    Schneider, D. K.
    17TH PAN-AMERICAN SYNCHROTRON RADIATION INSTRUMENTATION CONFERENCE SRI2013, 2014, 493
  • [27] Application of machine learning to X-ray diffraction-based classification
    Zhao, Bi
    Wolter, Scott
    Greenberg, Joel A.
    ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX) III, 2018, 10632
  • [28] Machine learning control of an elliptically bent hard X-ray mirror
    Mashrafi, Sheikh
    Harder, Ross
    Shi, Xianbo
    Shu, Deming
    Qiao, Zhi
    Wyman, Max
    Mooney, Tim
    Anton, Jayson
    Kearney, Steven
    Rebuffi, Luca
    Qian, Jun
    Shi, Bing
    Assoufid, Lahsen
    ADVANCES IN X-RAY/EUV OPTICS AND COMPONENTS XV, 2020, 11491
  • [29] Reducing the background in X-ray imaging detectors via machine learning
    Wilkins, D. R.
    Allen, S. W.
    Miller, E. D.
    Bautz, M.
    Chattopadhyay, T.
    Foster, R.
    Grant, C. E.
    Herrmann, S.
    Kraft, R.
    Morris, R. G.
    Nulsen, P.
    Schellenberger, G.
    SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY, 2022, 12181
  • [30] Analyzing Chest X-Ray Lung Images Using Machine Learning
    Somasundaram, K.
    Raman, Ramakrishnan
    Meenakshi, R.
    Chirputkar, Abhijit
    CARDIOMETRY, 2022, (25): : 145 - 148