Threshold analysis for a family of 2 x 2 operator matrices

被引:2
作者
Rasulov, T. H. [1 ]
Dilmurodov, E. B. [1 ]
机构
[1] Bukhara State Univ, Fac Phys & Math, Dept Math, M Ikbol Str 11, Bukhara 200100, Uzbekistan
来源
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS | 2019年 / 10卷 / 06期
关键词
operator matrices; Hamiltonian; generalized Friedrichs model; zero- and one-particle subspaces of a Fock space; threshold eigenvalues; virtual levels; annihilation and creation operators; ESSENTIAL SPECTRUM; EIGENVALUES; NUMBER;
D O I
10.17586/2220-8054-2019-10-6-616-622
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We consider a family of 2 x 2 operator matrices A(u)(k); k is an element of T-3 := (-pi, pi](3), mu > 0, acting in the direct sum of zero- and one-particle subspaces of a Fock space. It is associated with the Hamiltonian of a system consisting of at most two particles on a three-dimensional lattice Z(3), interacting via annihilation and creation operators. We find a set Lambda := {K-(1), ... ,K-(8)} subset of T-3 and a critical value of the coupling constant mu to establish necessary and sufficient conditions for either z = 0 = min(k is an element of T3) sigma(ess) (A(mu)(k)) (or z = 27/2 = max(k is an element of T3) sigma(ess)(A(mu)(k)) is a threshold eigenvalue or a virtual level of A(mu)(k((i))) for some k((i)) is an element of Lambda.
引用
收藏
页码:616 / 622
页数:7
相关论文
共 19 条
[1]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[2]   On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics [J].
Albeverio, Sergio ;
Lakaev, Saidakhmat N. ;
Rasulov, Tulkin H. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) :191-220
[3]   The threshold effects for a family of Friedrichs models under rank one perturbations [J].
Albeverio, Sergio ;
Lakaev, Saidakhmat N. ;
Muminov, Zahriddin I. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1152-1168
[4]  
[Anonymous], 1995, TRANSLATIONS MATH MO
[5]  
[Anonymous], 2008, SPECTRAL THEORY BLOC, DOI DOI 10.1142/P493
[6]  
Friedrichs K. O., 1965, PERTURBATION SPECTRA
[7]  
HUBNER M, 1995, ANN I H POINCARE-PHY, V62, P289
[8]   Spectral Analysis of the Spin-Boson Hamiltonian with Two Photons for Arbitrary Coupling [J].
Ibrogimov, Orif O. .
ANNALES HENRI POINCARE, 2018, 19 (11) :3561-3579
[9]  
Minlos R. A., 1996, Topics in Statistical and Theoretical Physics, American Mathematical Society Translations: Series 2, V177, P159, DOI [10.1090/trans2/177/09, DOI 10.1090/TRANS2/177/09]
[10]  
Mogilner A. I., 1991, Advances in Soviet Mathematics, V5, P139, DOI [10.1090/advsov/005/05, DOI 10.1090/ADVSOV/005/05]