Single point measurements of magnetic field gradient waveform

被引:11
|
作者
Goodyear, DJ
Shea, M
Beyea, SD
Shah, NJ
Balcom, BJ
机构
[1] Univ New Brunswick, Dept Phys, MRI Ctr, Fredericton, NB E3B 5A3, Canada
[2] Forschungszentrum, Inst Med, D-52428 Julich, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
gradient; waveform; single point; k-space; eddy current;
D O I
10.1016/S1090-7807(03)00152-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Pulsed magnetic field gradients are fundamental to spatial encoding and diffusion weighting in magnetic resonance. The ideal pulsed magnetic field gradient should have negligible rise and fall times, however, there are physical limits to how fast the magnetic field gradient may change with time. Finite gradient switching times, and transient, secondary, induced magnetic field gradients (eddy currents) alter the ideal gradient waveform and may introduce a variety of undesirable image artifacts. We have developed a new method to measure the complete magnetic field gradient waveform. The measurement employs a heavily doped test sample with short MR relaxation times (T-1, T-2, and T-2* < 100 mus) and a series of closely spaced broadband radiofrequency excitations, combined with single point data acquisition. This technique, a measure of evolving signal phase, directly determines the magnetic field gradient waveform experienced by the test sample. The measurement is sensitive to low level transient magnetic fields produced by eddy currents and other short and long time constant non-ideal gradient waveform behaviors. Data analysis is particularly facile permitting a very ready experimental check of gradient performance. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] Efficient gradient waveform measurements with variable-prephasing
    Harkins, Kevin D.
    Does, Mark D.
    JOURNAL OF MAGNETIC RESONANCE, 2021, 327
  • [2] Hazard surveillance for industrial magnetic fields: II. Field characteristics from waveform measurements
    Bowman, JD
    Methner, MM
    ANNALS OF OCCUPATIONAL HYGIENE, 2000, 44 (08) : 615 - 633
  • [3] "Robot Cloud" gradient climbing with point measurements
    Elor, Yotam
    Bruckstein, Alfred M.
    THEORETICAL COMPUTER SCIENCE, 2014, 547 : 90 - 103
  • [4] A rapid and robust gradient measurement technique using dynamic single-point imaging
    Jang, Hyungseok
    McMillan, Alan B.
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (03) : 950 - 962
  • [5] Pure phase encode magnetic field gradient monitor
    Han, Hui
    MacGregor, Rodney P.
    Balcom, Bruce J.
    JOURNAL OF MAGNETIC RESONANCE, 2009, 201 (02) : 212 - 217
  • [6] Variability of visual field measurements is correlated with the gradient of visual sensitivity
    Wyatt, Harry J.
    Dul, Mitchell W.
    Swanson, William H.
    VISION RESEARCH, 2007, 47 (07) : 925 - 936
  • [7] Magnetic Field Measurements of RCS Dipole for CSNS
    Chen, Wan
    Li, Qing
    Yin, Bao Gui
    Yang, Mei
    Zhang, Zhuo
    Kang, Wen
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
  • [8] Simple phase method for measurement of magnetic field gradient waveforms
    Latta, Peter
    Gruwel, Marco L. H.
    Volotovskyy, Vyacheslav
    Weber, Michael H.
    Tomanek, Boguslaw
    MAGNETIC RESONANCE IMAGING, 2007, 25 (09) : 1272 - 1276
  • [9] Compensation of the Magnetic Gradient Instability in MRI by Measurements Data for Several Angular Orientations
    Komarov, A. O.
    Naguliak, O. O.
    Netreba, A. V.
    Radchenko, S. P.
    Sudakov, O. O.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 355 - 359
  • [10] Transient perturbation to permanent magnetic field by gradient pulses in MRI magnets
    Sivasubramaniam, K.
    Xu, M.
    Huang, X.
    Barber, W.
    Amm, K.
    Laskaris, E. T.
    Havens, T.
    Xu, B.
    Jarvis, P.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) : 1550 - 1553