Jacobi polynomials and non-singlet structure function F2(x,Q2) up to N3LO

被引:0
|
作者
Khorramian, Ali N. [1 ]
Tehrani, S. Atashbar [2 ]
机构
[1] Semnan Univ, Dept Phys, Semnan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Particles & Acceleiators, Tehran, Iran
关键词
PDFs; DIS data; QCD fit; DEUTERON STRUCTURE FUNCTIONS; QCD ANALYSIS; CCFR DATA; LOW X; SCATTERING; PROTON;
D O I
10.1088/1674-1137/34/9/077
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
In this paper we present the non-singlet QCD analysis to determine valence quark distribution up to four loop We obtain the fractional difference between the 4-loop and the 1-, 2- and 3-loop presentations of xu(v)(x,Q(2)) and xd(v)(x,Q(2))
引用
收藏
页码:1479 / 1481
页数:3
相关论文
共 37 条
  • [1] Jacobi polynomials and non-singlet structure function F2 (x,Q~2) up to N~3LO
    Ali N.Khorramian
    S.Atashbar Tehrani
    中国物理C, 2010, 34 (09) : 1479 - 1481
  • [2] The exponent λ (x, Q2) of the proton structure function F2 (x, Q2) at low x
    Choudhury, DK
    Sahariah, PK
    PRAMANA-JOURNAL OF PHYSICS, 2003, 60 (03): : 563 - 567
  • [3] Nuclear medium modification of the F2(x, Q2) structure function
    Athar, M. Sajjad
    Ruiz Simo, I.
    Vicente Vacas, M. J.
    NUCLEAR PHYSICS A, 2011, 857 (01) : 29 - 41
  • [4] 3-Loops QCD analysis for non-singlet sector of F2
    Tehrani, S. Atashbar
    Khorramian, Ali. N.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 186 : 58 - 61
  • [5] Measurements of the structure functions F2(x, Q2) and FL(x, Q2) at low Q2
    Petrukhin, A
    DEEP INELASTIC SCATTERING, 2005, 792 : 233 - 236
  • [6] Machine learning representation of the F2 structure function over all charted Q2 and x range
    Brown, S.
    Niculescu, G.
    Niculescu, I
    PHYSICAL REVIEW C, 2021, 104 (06)
  • [7] The 3-loop non-singlet heavy flavor contributions to the structure function g1(x, Q2) at large momentum transfer
    Behring, A.
    Bluemlein, J.
    De Freitas, A.
    von Manteuffel, A.
    Schneider, C.
    NUCLEAR PHYSICS B, 2015, 897 : 612 - 644
  • [8] Non-singlet structure function F2NS(x, t) in DGLAP approach
    Borah, Neelakshi N. K.
    Choudhury, D. K.
    Sahariah, P. K.
    NATIONAL CONFERENCE ON CONTEMPORARY ISSUES IN HIGH ENERGY PHYSICS AND COSMOLOGY (NC-HEPC 2013), 2014, 481
  • [9] A new numerical method for obtaining gluon distribution functions G(x, Q2) = xg(x, Q2), from the proton structure function F2γp(x, Q2)
    Block, Martin M.
    EUROPEAN PHYSICAL JOURNAL C, 2010, 65 (1-2): : 1 - 7
  • [10] Regge-like initial input and evolution of non-singlet structure functions from DGLAP equation up to next-next-to-leading order at low x and low Q2
    Nath, Nayan Mani
    Das, Mrinal Kumar
    Sarma, Jayanta Kumar
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 629 - 637