On the integrability of a representation of sl(2, R)

被引:10
作者
Ben Said, Salem [1 ]
机构
[1] Univ Nancy 1, Dept Math, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
Dunkl operators; integrable representations; Schrodinger model; Dunkl transform; Bochner identity;
D O I
10.1016/j.jfa.2007.04.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dunkl operators involve a multiplicity function k as parameter [C.F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989) 167-183]. For positive real values of this function, we consider on the Schwartz space S(R-N) a representation omega(k) of sl(2, R) defined in terms of the Dunkl-Laplacian operator. By means of a beautiful theorem due to E. Nelson, we prove that w(k) exponentiates to a unique unitary representation of the universal covering group of SL(2, R). The representation theory is used to derive an identity of Bochner type for the Dunkl transform. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 1992, UNIVERSITEXT, DOI DOI 10.1007/978-1-4613-9200-2
[2]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[3]   The wave equation for Dunkl operators [J].
Ben Saïd, S ;
Orsted, B .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2005, 16 (3-4) :351-391
[4]   Segal-Bargmann transforms associated with finite Coxeter groups [J].
Ben Saïd, S ;
Orsted, B .
MATHEMATISCHE ANNALEN, 2006, 334 (02) :281-323
[5]   Bessel functions for root systems via the trigonometric setting [J].
Ben Saïd, S ;
Orsted, B .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (09) :551-585
[6]  
BENSAID S, SEMIN C, V15
[7]   Laguerre polynomials, restriction principle, and holomorphic representations of SL(2, R) [J].
Davidson, M ;
Olafsson, G ;
Zhang, G .
ACTA APPLICANDAE MATHEMATICAE, 2002, 71 (03) :261-277
[8]  
Davies E.B., 1995, Spectral theory and differential operators, volum e 42 o f Cambridge studies in advanced mathematics, V42
[9]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[10]  
DING HM, 1993, J REINE ANGEW MATH, V435, P157