Biotechnological production of ethanol: Biochemistry, processes and technologies

被引:112
作者
Sarris, Dimitris [1 ]
Papanikolaou, Seraphim [1 ]
机构
[1] Agr Univ Athens, Lab Food Microbiol & Biotechnol, Dept Food Sci & Human Nutr, 75 Iera Odos, GR-11855 Athens, Greece
来源
ENGINEERING IN LIFE SCIENCES | 2016年 / 16卷 / 04期
关键词
Biofuels; Renewable resources; Saccharomyces cerevisiae; Waste valorization; Zymomonas mobilis; IMMOBILIZED SACCHAROMYCES-CEREVISIAE; MILL WASTE-WATER; CAROB POD EXTRACT; WHITE-ROT FUNGI; ZYMOMONAS-MOBILIS; CRUDE GLYCEROL; BEET MOLASSES; MICROBIAL-PRODUCTION; YARROWIA-LIPOLYTICA; ALCOHOL PRODUCTION;
D O I
10.1002/elsc.201400199
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The majority of environmental problems arise from the use of conventional energy sources. The liability of such problems along with the reduction of fossil energy resources has led to the global need for alternative renewable energy sources. Using renewable biofuels as energy sources is of remarkable and continuously growing importance. Producing bioethanol through conversion of waste and residual biomass can be a viable and important perspective. In the first part of this review, general concepts, approaches and considerations concerning the utilization of the most important liquid biofuels, namely biodiesel and bioethanol, are presented. Unlike biodiesel (specifically first generation biodiesel), the production of bioethanol is exclusively based on the utilization of microbial technology and fermentation engineering. In the second part of this review, the biochemistry of ethanol production, with regards to the use of hexoses, pentoses or glycerol as carbon sources, is presented and critically discussed. Differences in the glycolytic pathways between the major ethanol-producing strains (Saccharomyces cerevisiae and Zymomonas mobilis) are presented. Regulation between respiration and fermentation in ethanol-producing yeasts, viz. effects "Pasteur", "Crabtree", "Kluyver" and "Custers", is discussed. Xylose and glycerol catabolism related with bioethanol production is also depicted and commented. The technology of the fermentation is presented along with a detailed illustration of the substrates used in the process and in pretreatment of lignocellulosic biomass, and the various fermentation configurations employed (separate hydrolysis and fermentation, simultaneous saccharification and fermentation, simultaneous saccharification and co-fermentation and consolidated bioprocessing). Finally, the production of bioethanol under non-aseptic conditions is presented and discussed.
引用
收藏
页码:307 / 329
页数:23
相关论文
共 178 条
[1]   Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process [J].
Aggelis, G ;
Ehaliotis, C ;
Nerud, F ;
Stoychev, I ;
Lyberatos, G ;
Zervakis, GI .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (2-3) :353-360
[2]  
Aggelis G., 2007, MICROBIOLOGY MICROBI
[3]   Aeration strategy:: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process [J].
Alfenore, S ;
Cameleyre, X ;
Benbadis, L ;
Bideaux, C ;
Uribelarrea, JL ;
Goma, G ;
Molina-Jouve, C ;
Guillouet, SE .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 63 (05) :537-542
[4]   Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process [J].
Alfenore, S ;
Molina-Jouve, C ;
Guillouet, SE ;
Uribelarrea, JL ;
Goma, G ;
Benbadis, L .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 60 (1-2) :67-72
[5]   Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass [J].
Alzate, C. A. Cardona ;
Toro, O. J. Sanchez .
ENERGY, 2006, 31 (13) :2447-2459
[6]   Biotechnological conversions of bio-diesel-derived crude glycerol by Yarrowia lipolytica strains [J].
Andre, Axel ;
Chatzifragkou, Afroditi ;
Diamantopoulou, Panagiota ;
Sarris, Dimitris ;
Philippoussis, Antonios ;
Galiotou-Panayotou, Maria ;
Komaitis, Michael ;
Papanikolaou, Seraphim .
ENGINEERING IN LIFE SCIENCES, 2009, 9 (06) :468-478
[7]   OSMOREGULATION IN SACCHAROMYCES-CEREVISIAE - STUDIES ON THE OSMOTIC INDUCTION OF GLYCEROL PRODUCTION AND GLYCEROL 3-PHOSPHATE DEHYDROGENASE (NAD+) [J].
ANDRE, L ;
HEMMING, A ;
ADLER, L .
FEBS LETTERS, 1991, 286 (1-2) :13-17
[8]   Involvement of lignin peroxidase in the decolourization of black olive mill wastewaters by Geotrichum candidum [J].
Ayed, L ;
Assas, N ;
Sayadi, S ;
Hamdi, M .
LETTERS IN APPLIED MICROBIOLOGY, 2005, 40 (01) :7-11
[9]   Progress in bioethanol processing [J].
Balat, Mustafa ;
Balat, Havva ;
Oz, Cahide .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2008, 34 (05) :551-573
[10]   Recent trends in global production and utilization of bio-ethanol fuel [J].
Balat, Mustafa ;
Balat, Havva .
APPLIED ENERGY, 2009, 86 (11) :2273-2282