SUPERPOSITION IN HOMOGENEOUS AND VECTOR VALUED SOBOLEV SPACES

被引:10
|
作者
Bourdaud, Gerard [1 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu, Equipe Anal Fonct, F-75013 Paris, France
关键词
Superposition operators; Sobolev spaces; BESOV; CALCULUS;
D O I
10.1090/S0002-9947-2010-05150-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a sufficient condition on a function f : R-k -> R so that it takes by superposition the homogeneous vector valued space (W) over dot(p)(m) boolean AND (W) over dot(mp)(1) (R-n, R-k) into the corresponding real valued space, for integers m, n, k such that m >= 2, k, n >= 1, and p is an element of [1, +infinity[. In case k = 1, this condition also turns out to be necessary. For k > 1, it is not proved to be necessary, but it is weaker than the conditions used till now, such as the continuity and boundedness of all derivatives up to order m.
引用
收藏
页码:6105 / 6130
页数:26
相关论文
共 50 条