SUPERPOSITION IN HOMOGENEOUS AND VECTOR VALUED SOBOLEV SPACES

被引:10
|
作者
Bourdaud, Gerard [1 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu, Equipe Anal Fonct, F-75013 Paris, France
关键词
Superposition operators; Sobolev spaces; BESOV; CALCULUS;
D O I
10.1090/S0002-9947-2010-05150-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a sufficient condition on a function f : R-k -> R so that it takes by superposition the homogeneous vector valued space (W) over dot(p)(m) boolean AND (W) over dot(mp)(1) (R-n, R-k) into the corresponding real valued space, for integers m, n, k such that m >= 2, k, n >= 1, and p is an element of [1, +infinity[. In case k = 1, this condition also turns out to be necessary. For k > 1, it is not proved to be necessary, but it is weaker than the conditions used till now, such as the continuity and boundedness of all derivatives up to order m.
引用
收藏
页码:6105 / 6130
页数:26
相关论文
共 50 条
  • [1] Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    Ruiz de Alarcon, Alberto
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [2] Sobolev spaces of vector-valued functions
    Iván Caamaño
    Jesús Á. Jaramillo
    Ángeles Prieto
    Alberto Ruiz de Alarcón
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [3] Characterizing Sobolev spaces of vector-valued functions
    Caamano, Ivan
    Jaramillo, Jesus A.
    Prieto, Angeles
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [4] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
  • [5] Vector-valued Sobolev spaces based on Banach function spaces
    Evseev, Nikita
    Nonlinear Analysis, Theory, Methods and Applications, 2021, 211
  • [6] Refined limiting imbeddings for Sobolev spaces of vector-valued
    Krbec, M
    Schmeisser, HJ
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (02) : 372 - 388
  • [7] Superposition operator in Sobolev spaces on domains
    Labutin, DA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) : 3399 - 3403
  • [8] SOBOLEV INEQUALITIES ON HOMOGENEOUS SPACES
    BIROLI, M
    MOSCO, U
    POTENTIAL ANALYSIS, 1995, 4 (04) : 311 - 324
  • [9] Bilinear forms on homogeneous Sobolev spaces
    Cascante, Carme
    Fabrega, Joan
    Ortega, Joaquin M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 722 - 750
  • [10] Vector valued multivariate spectral multipliers, Littlewood–Paley functions, and Sobolev spaces in the Hermite setting
    J. J. Betancor
    J. C. Fariña
    A. Sanabria
    Monatshefte für Mathematik, 2015, 176 : 165 - 195