Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach

被引:24
|
作者
Sakellarios, Antonis I. [1 ,2 ]
Raber, Lorenz [3 ]
Bourantas, Christos V. [4 ]
Exarchos, Themis P. [2 ]
Athanasiou, Lambros S. [5 ]
Pelosi, Gualtiero [6 ]
Koskinas, Konstantinos C. [3 ]
Parodi, Oberdan [6 ]
Naka, Katerina K. [7 ]
Michalis, Lampros K. [7 ]
Serruys, Patrick W. [8 ]
Garcia-Garcia, Hector M. [9 ]
Windecker, Stephan [3 ]
Fotiadis, Dimitrios I. [1 ,2 ]
机构
[1] Univ Ioannina, Dept Mat Sci & Engn, Inst Mol Biol & Biotechnol, Unit Med Technol & Intelligent Informat Syst,FORT, GR-45110 Ioannina, Greece
[2] Univ Ioannina, FORTH, Inst Mol Biol & Biotechnol, Dept Biomed Res, GR-45110 Ioannina, Greece
[3] Bern Univ Hosp, Dept Intervent Cardiol, Bern, Switzerland
[4] UCL, Dept Cardiovasc Sci, London, England
[5] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[6] CNR, Inst Clin Physiol, Ottawa, ON, Canada
[7] Univ Ioannina, Dept Cardiol, Med Sch, Michaelide Cardiac Ctr, Ioannina, Greece
[8] Erasmus MC, Thoraxctr, Dept Intervent Cardiol, Rotterdam, Netherlands
[9] MedStar Washington Hosp Ctr, Dept Intervent Cardiol, Washington, DC USA
关键词
Atherosclerotic plaque growth; finite elements; prediction of plaque growth; proof-of-concept study; LOW-DENSITY-LIPOPROTEIN; ENDOTHELIAL SHEAR-STRESS; MASS-TRANSPORT; LDL TRANSPORT; INTRAVASCULAR ULTRASOUND; 3D RECONSTRUCTION; WALL; PROGRESSION; FLOW; ACCUMULATION;
D O I
10.1109/TBME.2016.2619489
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: The aim of this study is to explore major mechanisms of atherosclerotic plaque growth, presenting a proof-of-concept numerical model. Methods: To this aim, a human reconstructed left circumflex coronary artery is utilized for a multilevel modeling approach. More specifically, the first level consists of the modeling of blood flow and endothelial shear stress (ESS) computation. The second level includes the modeling of low-density lipoprotein (LDL) and high-density lipoprotein and monocytes transport through the endothelial membrane to vessel wall. The third level comprises of the modeling of LDL oxidation, macrophages differentiation, and foam cells formation. All modeling levels integrate experimental findings to describe the major mechanisms that occur in the arterial physiology. In order to validate the proposed approach, we utilize a patient specific scenario by comparing the baseline computational results with the changes in arterial wall thickness, lumen diameter, and plaque components using follow-up data. Results: The results of this model show that ESS and LDL concentration have a good correlation with the changes in plaque area [R-2 = 0.365 (P = 0.029, adjusted R-2 = 0.307) and R-2 = 0.368 (P = 0.015, adjusted R-2 = 0.342), respectively], whereas the introduction of the variables of oxidized LDL, macrophages, and foam cells as independent predictors improves the accuracy in predicting regions potential for atherosclerotic plaque development [R-2 = 0.847 (P = 0.009, adjusted R-2 = 0.738)]. Conclusion: Advanced computational models can be used to increase the accuracy to predict regions which are prone to plaque development. Significance: Atherosclerosis is one of leading causes of death worldwide. For this purpose computational models have to be implemented to predict disease progression.
引用
收藏
页码:1721 / 1730
页数:10
相关论文
共 50 条
  • [1] Atherosclerotic Coronary Plaque Development Visualized by In Vivo Coronary Imaging
    Sakamoto, Kenji
    Nagamatsu, Suguru
    Yamamoto, Eiichiro
    Kaikita, Koichi
    Tsujita, Kenichi
    CIRCULATION JOURNAL, 2018, 82 (07) : 1727 - 1734
  • [2] Image-based biomechanical modeling for coronary atherosclerotic plaque progression and vulnerability prediction
    Lv, Rui
    Wang, Liang
    Maehara, Akiko
    Guo, Xiaoya
    Zheng, Jie
    Samady, Habib
    Giddens, Don P.
    Mintz, Gary S.
    Stone, Gregg W.
    Tang, Dalin
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 352 : 1 - 8
  • [3] Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modeling
    Ohayon, Jacques
    Finet, Gerard
    Le Floc'h, Simon
    Cloutier, Guy
    Gharib, Ahmed M.
    Heroux, Julie
    Pettigrew, Roderic I.
    ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (02) : 269 - 279
  • [4] The effect of coronary bifurcation and haemodynamics in prediction of atherosclerotic plaque development: a serial computed tomographic coronary angiographic study
    Sakellarios, Antonis
    Bourantas, Christos V.
    Papadopoulou, Stella-Lida
    Kitslaar, Pieter H.
    Girasis, Chrysafios
    Stone, Gregg W.
    Reiber, Johan H. C.
    Michalis, Lampros K.
    Serruys, Patrick W.
    de Feyter, Pim J.
    Garcia-Gercia, Hector M.
    Fotiadis, Dimitrios I.
    EUROINTERVENTION, 2017, 13 (09) : 1084 - 1091
  • [5] Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries
    Rezvani-Sharif, Alireza
    Tafazzoli-Shadpour, Mohammad
    Avolio, Alberto
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (03) : 731 - 740
  • [6] The impact of helical flow on coronary atherosclerotic plaque development
    De Nisco, Giuseppe
    Hoogendoorn, Ayla
    Chiastra, Claudio
    Gallo, Diego
    Kok, Annette M.
    Morbiducci, Umberto
    Wentzel, Jolanda J.
    ATHEROSCLEROSIS, 2020, 300 : 39 - 46
  • [7] Modeling Atherosclerotic Plaque Growth: A Case Report Based on a 3D Geometry of Left Coronary Arterial Tree from Computed Tomography
    Sakellarios, Antonis I.
    Siogkas, Panagiotis K.
    Athanasiou, Lambros S.
    Exarchos, Themis P.
    Papafaklis, Michail I.
    Bourantas, Christos V.
    Naka, Katerina K.
    Iliopoulou, Dimitra
    Michalis, Lampros K.
    Filipovic, Nenad
    Parodi, Oberdan
    Fotiadis, Dimitrios I.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [8] SMARTool: A Tool for Clinical Decision Support for the Management of Patients with Coronary Artery Disease Based on Modeling of Atherosclerotic Plaque Process
    Sakellarios, Antonis I.
    Rigas, George
    Kigka, Vassiliki
    Siogkas, Panagiotis
    Tsompou, Panagiota
    Karanasiou, Georgia
    Exarchos, Themis
    Andrikos, Ioannis
    Tachos, Nikolaos
    Pelosi, Gualtriero
    Parodi, Oberdan
    Fotiaids, Dimitrios I.
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 96 - 99
  • [9] Non-Invasive Prediction of Site-Specific Coronary Atherosclerotic Plaque Progression using Lipidomics, Blood Flow, and LDL Transport Modeling
    Sakellarios, Antonis I.
    Tsompou, Panagiota
    Kigka, Vassiliki
    Siogkas, Panagiotis
    Kyriakidis, Savvas
    Tachos, Nikolaos
    Karanasiou, Georgia
    Scholte, Arthur
    Clemente, Alberto
    Neglia, Danilo
    Parodi, Oberdan
    Knuuti, Juhani
    Michalis, Lampros K.
    Pelosi, Gualtiero
    Rocchiccioli, Silvia
    Fotiadis, Dimitrios I.
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 13
  • [10] Relation between Coronary Arterial Remodeling and Characteristics of Atherosclerotic Plaque Determined by Intravascular Ultrasound
    Sy Van Hoang
    Kha Minh Nguyen
    Hung Phi Truong
    Luan Tri Mai
    Hai Phuong Nguyen Tran
    ARCHIVES OF PHARMACY PRACTICE, 2020, 11 (01) : 54 - 59