Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

被引:346
|
作者
Anagnostou, Eleni [1 ]
John, Eleanor H. [2 ,8 ]
Edgar, Kirsty M. [2 ,3 ,9 ]
Foster, Gavin L. [1 ]
Ridgwell, Andy [4 ,5 ]
Inglis, Gordon N. [6 ,7 ]
Pancost, Richard D. [6 ,7 ]
Lunt, Daniel J. [4 ,5 ]
Pearson, Paul N. [2 ]
机构
[1] Univ Southampton, Natl Oceanog Ctr Southampton, Ocean & Earth Sci, Waterfront Campus, Southampton SO14 3ZH, Hants, England
[2] Cardiff Univ, Sch Earth & Ocean Sci, Pk Pl, Cardiff CF10 3AT, S Glam, Wales
[3] Univ Bristol, Sch Earth Sci, Bristol BS8 1RJ, Avon, England
[4] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[5] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[6] Univ Bristol, Sch Chem, Organ Geochem Unit, Cantocks Close, Bristol BS8 1TS, Avon, England
[7] Univ Bristol, Cabot Inst, Bristol BS8 1UJ, Avon, England
[8] Univ S Pacific, Sch Geog Earth Sci & Environm, Suva, Fiji
[9] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
关键词
BORON ISOTOPIC COMPOSITION; CARBON-DIOXIDE; PLANKTONIC-FORAMINIFERA; SEAWATER PH; STABLE-ISOTOPES; KILWA GROUP; OXYGEN; SEA; PALEOGENE; EVOLUTION;
D O I
10.1038/nature17423
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)(1), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period(2-4). Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million(5-7), and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments(8-11) to generate a new high-fidelity record of CO2 concentrations using the boron isotope (delta B-11) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates(6). Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene(12). Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period(13), this CO2 decline was sufficient to drive the well documented high-and low-latitude cooling that occurred through the Eocene(14). Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed(2-4), both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius(15)), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.
引用
收藏
页码:380 / +
页数:19
相关论文
共 50 条
  • [1] Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate
    Eleni Anagnostou
    Eleanor H. John
    Kirsty M. Edgar
    Gavin L. Foster
    Andy Ridgwell
    Gordon N. Inglis
    Richard D. Pancost
    Daniel J. Lunt
    Paul N. Pearson
    Nature, 2016, 533 : 380 - 384
  • [2] India-Asia collision as a driver of atmospheric CO2 in the Cenozoic
    Guo, Zhengfu
    Wilson, Marjorie
    Dingwell, Donald B.
    Liu, Jiaqi
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] India-Asia collision as a driver of atmospheric CO2 in the Cenozoic
    Zhengfu Guo
    Marjorie Wilson
    Donald B. Dingwell
    Jiaqi Liu
    Nature Communications, 12
  • [4] Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use
    de Almeida Castanho, Andrea D.
    Galbraith, David
    Zhang, Ke
    Coe, Michael T.
    Costa, Marcos H.
    Moorcroft, Paul
    GLOBAL BIOGEOCHEMICAL CYCLES, 2016, 30 (01) : 18 - 39
  • [5] Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China
    Li, Xianghui
    Wang, Jingyu
    Rasbury, Troy
    Zhou, Min
    Wei, Zhen
    Zhang, Chaokai
    CLIMATE OF THE PAST, 2020, 16 (06) : 2055 - 2074
  • [6] Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate
    Wallmann, K
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (18) : 3005 - 3025
  • [8] Toward a Cenozoic history of atmospheric CO2
    Honisch, Barbel
    Royer, Dana L.
    Breecker, Daniel O.
    Polissar, Pratigya J.
    Bowen, Gabriel J.
    Henehan, Michael J.
    Cui, Ying
    Steinthorsdottir, Margret
    McElwain, Jennifer C.
    Kohn, Matthew J.
    Pearson, Ann
    Phelps, Samuel R.
    Uno, Kevin T.
    Ridgwell, Andy
    Anagnostou, Eleni
    Austermann, Jacqueline
    Badger, Marcus P. S.
    Barclay, Richard S.
    Bijl, Peter K.
    Chalk, Thomas B.
    Scotese, Christopher R.
    de la Vega, Elwyn
    DeConto, Robert M.
    Dyez, Kelsey A.
    Ferrini, Vicki
    Franks, Peter J.
    Giulivi, Claudia F.
    Gutjahr, Marcus
    Harper, Dustin T.
    Haynes, Laura L.
    Huber, Matthew
    Snell, Kathryn E.
    Keisling, Benjamin A.
    Konrad, Wilfried
    Lowenstein, Tim K.
    Malinverno, Alberto
    Guillermic, Maxence
    Mejia, Luz Maria
    Milligan, Joseph N.
    Morton, John J.
    Nordt, Lee
    Whiteford, Ross
    Roth-Nebelsick, Anita
    Rugenstein, Jeremy K. C.
    Schaller, Morgan F.
    Sheldon, Nathan D.
    Sosdian, Sindia
    Wilkes, Elise B.
    Witkowski, Caitlyn R.
    Zhang, Yi Ge
    SCIENCE, 2023, 382 (6675) : 1136 - +
  • [9] CO2 AND CHANGING CLIMATE
    不详
    EPISODES, 1983, (04): : 28 - 28
  • [10] EXAGGERATED CLIMATE WARMING ON THE ASSUMPTION OF UNIFORM ATMOSPHERIC CO2 CONCENTRATION
    Yang, C. Y.
    Wang, H. J.
    Zhao, S. X.
    Cui, X. Y.
    Deng, B.
    Liu, X. P.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2018, 16 (04): : 3711 - 3728