Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy

被引:29
|
作者
Li, Lei-Ting [1 ,2 ]
Lin, Y. C. [1 ,2 ]
Li, Ling [3 ]
Shen, Lu-Ming [3 ]
Wen, Dong-Xu [1 ,2 ]
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
[2] State Key Lab High Performance Complex Mfg, Changsha 410083, Hunan, Peoples R China
[3] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
alloy; crystal plasticity; hot deformation; microstructural evolution; representative volume element; FLOW BEHAVIOR; CONSTITUTIVE MODEL; DYNAMIC RECRYSTALLIZATION; MICROSTRUCTURAL EVOLUTION; NUMERICAL-SIMULATION; MECHANICAL-BEHAVIOR; TEXTURE EVOLUTION; TI-6AL-4V ALLOY; ALUMINUM-ALLOY; SINGLE-CRYSTAL;
D O I
10.1007/s11665-015-1395-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.
引用
收藏
页码:1294 / 1304
页数:11
相关论文
共 50 条
  • [1] Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy
    Lei-Ting Li
    Y. C. Lin
    Ling Li
    Lu-Ming Shen
    Dong-Xu Wen
    Journal of Materials Engineering and Performance, 2015, 24 : 1294 - 1304
  • [2] Three-dimensional crystal plasticity finite element simulation of nanoindentation on aluminium alloy 2024
    Li, Ling
    Shen, Luming
    Proust, Gwenaelle
    Moy, Charles K. S.
    Ranzi, Gianluca
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 579 : 41 - 49
  • [3] Three-dimensional finite element analysis using crystal plasticity for a parameter study of fatigue crack incubation in a 7075 aluminum alloy
    Wang, L.
    Daniewicz, S. R.
    Horstemeyer, M. F.
    Sintay, S.
    Rollett, A. D.
    INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (04) : 659 - 667
  • [4] Hot compressive deformation behavior of 7075 Al alloy under elevated temperature
    Lin, Y. C.
    Li, Lei-Ting
    Fu, Yan-Xiang
    Jiang, Yu-Qiang
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (03) : 1306 - 1318
  • [5] Simulation of Plastic Deformation Behaviors of Ti3Al Single Crystal with Crystal Plasticity Finite Element Method
    Zhao Wenjuan
    Tang An
    Lin Qiquan
    Ren Yuping
    Xu Junrui
    Song Binna
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (06) : 1753 - 1759
  • [6] Hot compressive deformation behavior of 7075 Al alloy under elevated temperature
    Y. C. Lin
    Lei-Ting Li
    Yan-Xiang Fu
    Yu-Qiang Jiang
    Journal of Materials Science, 2012, 47 : 1306 - 1318
  • [7] CRYSTAL PLASTICITY FINITE ELEMENT SIMULATION OF SLIP AND DEFORMATION IN ULTRATHIN COPPER STRIP ROLLING
    Chen Shoudong
    Liu Xianghua
    Liu Lizhong
    Song Meng
    ACTA METALLURGICA SINICA, 2016, 52 (01) : 120 - 128
  • [8] Three-dimensional finite element analysis using crystal plasticity for a parameter study of microstructurally small fatigue crack growth in a AA7075 aluminum alloy
    Wang, L.
    Daniewicz, S. R.
    Horstemeyer, M. F.
    Sintay, S.
    Rollett, A. D.
    INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (04) : 651 - 658
  • [9] On the Influence of Grain Boundary Misorientation on the Severe Plastic Deformation of Aluminum Bicrystals: A Three-Dimensional Crystal Plasticity Finite Element Method Study
    Liu, M.
    Nambu, S.
    Zhou, K.
    Wang, P. F.
    Lu, G.
    Lu, C.
    Tieu, K. A.
    Koseki, T.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50A (05): : 2399 - 2412
  • [10] SIMULATION TO THE CYCLIC DEFORMATION OF POLYCRYSTALLINE ALUMINUM ALLOY USING CRYSTAL PLASTICITY FINITE ELEMENT METHOD
    Luo, Juan
    Kang, Guozheng
    Shi, Mingxing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2013, 2 (3-4)