Hybrid Classification for High-Speed and High-Accuracy Network Intrusion Detection System

被引:7
|
作者
Kim, Taehoon [1 ]
Pak, Wooguil [1 ]
机构
[1] Yeungnam Univ, Dept Informat & Commun Engn, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning algorithms; Real-time systems; Security; Machine learning; Hardware; Scalability; Network intrusion detection; Hybrid classifier; network attack; network intrusion detection; three level; real-time detection; DEEP LEARNING APPROACH; RANDOM FOREST; IDS;
D O I
10.1109/ACCESS.2021.3087201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cybercrime is growing at a rapid pace, and its techniques are becoming more sophisticated. In order to actively cope with such threats, new approaches based on machine learning and requiring less administrator intervention have been proposed, but there are still many technical difficulties in detecting security attacks in real time. To solve this problem, we propose a new machine learning-based real-time intrusion detection algorithm. Unlike the existing approaches, the one proposed can detect the presence of an attack every time a packet is received, enabling real-time detection. In addition, our algorithm effectively reduces the system load, which may significantly increase from real-time detection, compared to non-real-time detection. In the algorithm, the increase in the number of memory accesses can be minimized (to below 30 %) compared to conventional methods. Since the proposed method is pure software-based approach, it has excellent scalability and flexibility against various attacks. Therefore, the proposed method cannot support the high classification performance of the hardware-based method but also the high flexibility of the software-based method simultaneously, it can effectively detect and prevent various cyber-attacks.
引用
收藏
页码:83806 / 83817
页数:12
相关论文
共 50 条
  • [31] On High-Speed Flow-Based Intrusion Detection Using Snort-Compatible Signatures
    Erlacher, Felix
    Dressler, Falko
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (01) : 495 - 506
  • [32] Application features of commercial and open source intrusion detection systems in the high-speed corporate networks
    Dutkevych, Taras
    Piskozub, Andrian
    TCSET 2006: MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE, PROCEEDINGS, 2006, : 176 - 177
  • [33] Hybrid Network Intrusion Detection
    Tahmoush, David
    SENSORS, AND COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE (C3I) TECHNOLOGIES FOR HOMELAND SECURITY AND HOMELAND DEFENSE XIII, 2014, 9074
  • [34] High-Accuracy Neural Network Interatomic Potential for Silicon Nitride
    Xu, Hui
    Li, Zeyuan
    Zhang, Zhaofu
    Liu, Sheng
    Shen, Shengnan
    Guo, Yuzheng
    NANOMATERIALS, 2023, 13 (08)
  • [35] Recurrent network in Network Intrusion Detection System
    Xue, JS
    Sun, JZ
    Zhang, X
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2676 - 2679
  • [36] The sound of intrusion: A novel network intrusion detection system
    Aldarwbi, Mohammed Y.
    Lashkari, Arash H.
    Ghorbani, Ali A.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [37] A High-Accuracy Deep Learning Approach for Wheat Disease Detection
    Patil, Soham Lalit
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 277 - 291
  • [38] A hybrid network intrusion detection system using simplified swarm optimization (SSO)
    Chung, Yuk Ying
    Wahid, Noorhaniza
    APPLIED SOFT COMPUTING, 2012, 12 (09) : 3014 - 3022
  • [39] Classification of Intrusion Detection System (IDS) Based on Computer Network
    Effendy, David Ahmad
    Kusrini, Kusrini
    Sudarmawan, Sudarmawan
    2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION, 2017, : 90 - 94
  • [40] Dynamic Deep Forest: An Ensemble Classification Method for Network Intrusion Detection
    Hu, Bo
    Wang, Jinxi
    Zhu, Yifan
    Yang, Tan
    ELECTRONICS, 2019, 8 (09)