Bounds on the Parameters of Locally Recoverable Codes

被引:101
作者
Tamo, Itzhak [1 ,2 ]
Barg, Alexander [3 ,4 ,5 ]
Frolov, Alexey [4 ,6 ]
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-39040 Tel Aviv, Israel
[3] Univ Maryland, Syst Res Inst, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Russian Acad Sci, IITP, Moscow 127051, Russia
[5] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[6] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
基金
美国国家科学基金会; 俄罗斯科学基金会;
关键词
Availability problem; asymptotic bounds; Gilbert-Varshamov bound; graph expansion; recovery graph;
D O I
10.1109/TIT.2016.2518663
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A locally recoverable code (LRC code) is a code over a finite alphabet, such that every symbol in the encoding is a function of a small number of other symbols that form a recovering set. In this paper, we derive new finite-length and asymptotic bounds on the parameters of LRC codes. For LRC codes with a single recovering set for every coordinate, we derive an asymptotic Gilbert-Varshamov type bound for LRC codes and find the maximum attainable relative distance of asymptotically good LRC codes. Similar results are established for LRC codes with two disjoint recovering sets for every coordinate. For the case of multiple recovering sets (the availability problem), we derive a lower bound on the parameters using expander graph arguments. Finally, we also derive finite-length upper bounds on the rate and the distance of LRC codes with multiple recovering sets.
引用
收藏
页码:3070 / 3083
页数:14
相关论文
共 34 条
  • [1] A NEW UPPER BOUND ON NONBINARY BLOCK-CODES
    AALTONEN, M
    [J]. DISCRETE MATHEMATICS, 1990, 83 (2-3) : 139 - 160
  • [2] Aaltonen M., 1977, IEEE T INFORM THEORY, V25, P85
  • [3] [Anonymous], 1963, Low-Density Parity-Check Codes
  • [4] [Anonymous], 48 ANN C INF SCI SYS
  • [5] Distance properties of expander codes
    Barg, A
    Zémor, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) : 78 - 90
  • [6] WEIGHT DISTRIBUTION AND DECODING OF CODES ON HYPERGRAPHS
    Barg, Alexander
    Mazumdar, Arya
    Zemor, Gilles
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) : 433 - 450
  • [7] Barg A, 2015, IEEE INT SYMP INFO, P1252, DOI 10.1109/ISIT.2015.7282656
  • [8] Upper bounds on the rate of LDPC codes as a function of minimum distance
    Ben-Haim, Y
    Litsyn, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2092 - 2100
  • [9] Expander graph arguments for message-passing algorithms
    Burshtein, D
    Miller, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) : 782 - 790
  • [10] Bounds on the Size of Locally Recoverable Codes
    Cadambe, Viveck R.
    Mazumdar, Arya
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) : 5787 - 5794