Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting

被引:40
作者
Batista-Grau, P. [1 ]
Sanchez-Tovar, R. [1 ,2 ]
Fernandez-Domene, R. M. [1 ]
Garcia-Anton, J. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Seguridad Ind Radiofls & Medioambiental, IEC, Camino Vera S-N, E-46022 Valencia, Spain
[2] Univ Valencia, Dept Ingn Quim, Av Univ S-N, E-46100 Burjassot, Spain
关键词
Zinc oxide; Anodization; Hydrodynamic conditions; Bicarbonate; Photoelectrocatalyst; Water splitting; ANODIC-OXIDATION; ZINC; PHOTOANODES;
D O I
10.1016/j.surfcoat.2019.125197
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work studies the influence of hydrodynamic conditions (from 0 to 5000 rpm) during Zn anodization process on the morphology, structure and photoelectrocatalytic behavior of ZnO nanostructures. For this purpose, analysis with Confocal Laser-Raman Spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and photoelectrochemical water splitting tests were performed. This investigation reveals that hydrodynamic conditions during anodization promoted the formation of ordered ZnO nanowires along the surface that greatly enhance its stability and increases the photocurrent density response for water splitting in a 159% at the 5000 rpm electrode rotation speed.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Nanostructuration and band gap emission enhancement of ZnO film via electrochemical anodization [J].
Achour, A. ;
Soussou, M. A. ;
Aissa, K. Ait ;
Islam, M. ;
Barreau, N. ;
Faulques, E. ;
Le Brizoual, L. ;
Djouadi, M. A. ;
Boujtita, M. .
THIN SOLID FILMS, 2014, 571 :168-174
[2]   Characterization of nanostructured ZnO grown by linear sweep voltammetry [J].
Atourki, Lahoucine ;
Ihalane, El Hassane ;
Kirou, Hassan ;
Bouabid, Khalid ;
Elfanaoui, Abdeslam ;
Laanab, Laarbi ;
Portier, Xavier ;
Ihlal, Ahmed .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 148 :20-24
[3]  
Bard AJ, 2001, ELECTROCHEMICAL METH, V2, P580
[4]   Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition [J].
Chen, Yen-Hsing ;
Shen, Yu-Min ;
Wang, Sheng-Chang ;
Huang, Jow-Lay .
THIN SOLID FILMS, 2014, 570 :303-309
[5]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[6]   Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells [J].
De Marco, Luisa ;
Calestani, Davide ;
Qualtieri, Antonio ;
Giannuzzi, Roberto ;
Manca, Michele ;
Ferro, Patrizia ;
Gigli, Giuseppe ;
Listorti, Andrea ;
Mosca, Roberto .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 168 :227-233
[7]   Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes [J].
Faid, Alaa Y. ;
Allam, Nageh K. .
RSC ADVANCES, 2016, 6 (83) :80221-80225
[8]   Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions [J].
Fernandez-Dornene, R. M. ;
Sanchez-Tovar, R. ;
Segura-Sanchis, E. ;
Garcia-Anton, J. .
CHEMICAL ENGINEERING JOURNAL, 2016, 286 :59-67
[9]   ZnO nanowires grown directly on zinc foils by thermal oxidation in air: Wetting and water adhesion properties [J].
Florica, C. ;
Preda, N. ;
Costas, A. ;
Zgura, I. ;
Enculescu, I. .
MATERIALS LETTERS, 2016, 170 :156-159
[10]   SEM, EDX and Raman and infrared spectroscopic study of brianyoungite Zn3(CO3,SO4)(OH)4 from Esperanza Mine, Laurion District, Greece [J].
Frost, Ray L. ;
Lopez, Andres ;
Wang, Lina ;
Scholz, Ricardo ;
Sampaio, Ney Pinheiro .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2015, 149 :279-284