High-Resolution Laser-Induced Graphene from Photoresist

被引:72
作者
Beckham, Jacob L. [1 ]
Li, John Tianci [1 ,2 ]
Stanford, Michael G. [1 ]
Chen, Weiyin [1 ]
McHugh, Emily A. [1 ]
Advincula, Paul A. [1 ]
Wyss, Kevin M. [1 ]
Chyan, Yieu [1 ]
Boldman, Walker L. [3 ]
Rack, Philip D. [3 ,4 ]
Tour, James M. [5 ,6 ,7 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[3] Univ Tennessee, Dept Mat Sci, Knoxville, TN 37996 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[5] Rice Univ, Dept Chem, Smalley Curl Inst, NanoCarbon Ctr,Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[6] Rice Univ, Welch Inst Adv Mat, Dept Mat Sci & Nanoengn, Houston, TX 77005 USA
[7] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
laser-induced graphene; thin films; high resolution; direct write; photoresist; GROWTH;
D O I
10.1021/acsnano.1c01843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of patterned graphene electronics at high resolution is an important challenge for many applications in microelectronics. Here, we demonstrate the conversion of positive photoresist (PR), commonly employed in the commercial manufacture of consumer electronics, into laser-induced graphene (LIG). Sequential lasing converts the PR photopolymer first into amorphous carbon, then to photoresist-derived LIG (PR-LIG). The resulting material possesses good conductivity and is easily doped with metal or other additives for additional functionality. Furthermore, photolithographic exposure of PR prior to lasing enables the generation of PR-LIG patterns small enough to be invisible to the naked eye. By exploiting PR as a photopatternable LIG precursor, PR-LIG can be synthesized with a spatial resolution of similar to 10 mu m, up to 15 times smaller than conventional LIG patterning methods. The patterning of these small PR-LIG features could offer a powerful and broadly accessible strategy for the fabrication of microscale LIG-derived nanocomposites for on-chip devices.
引用
收藏
页码:8976 / 8983
页数:8
相关论文
共 45 条
[1]   Laser direct 3D patterning and reduction of graphene oxide film on polymer substrate [J].
Bobrinetskiy, I. I. ;
Emelianov, A. V. ;
Smagulova, S. A. ;
Komarov, I. A. ;
Otero, N. ;
Romero, P. M. .
MATERIALS LETTERS, 2017, 187 :20-23
[2]   Laser-Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide [J].
Carvalho, Alexandre F. ;
Fernandes, Antonio J. S. ;
Leitao, Catia ;
Deuermeier, Jonas ;
Marques, Ana C. ;
Martins, Rodrigo ;
Fortunato, Elvira ;
Costa, Florinda M. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (52)
[3]  
Choucair M, 2009, NAT NANOTECHNOL, V4, P30, DOI [10.1038/nnano.2008.365, 10.1038/NNANO.2008.365]
[4]   Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food [J].
Chyan, Yieu ;
Ye, Ruquan ;
Li, Yilun ;
Singh, Swatantra Pratap ;
Arnusch, Christopher J. ;
Tour, James M. .
ACS NANO, 2018, 12 (03) :2176-2183
[5]   CHARACTERIZATION OF POSITIVE PHOTORESIST [J].
DILL, FH ;
HORNBERGER, WP ;
HAUGE, PS ;
SHAW, JM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1975, ED22 (07) :445-452
[6]   Direct Real-Time Monitoring of Stage Transitions in Graphite Intercalation Compounds [J].
Dimiev, Ayrat M. ;
Ceriotti, Gabriel ;
Behabtu, Natnael ;
Zakhidov, Dante ;
Pasquali, Matteo ;
Saito, Riichiro ;
Tour, James M. .
ACS NANO, 2013, 7 (03) :2773-2780
[7]   Laser-induced graphene fibers [J].
Duy, Luong Xuan ;
Peng, Zhiwei ;
Li, Yilun ;
Zhang, Jibo ;
Ji, Yongsung ;
Tour, James M. .
CARBON, 2018, 126 :472-479
[8]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   Laser-Induced Graphene from Wood Impregnated with Metal Salts and Use in Electrocatalysis [J].
Han, Xiao ;
Ye, Ruquan ;
Chyan, Yieu ;
Wang, Tuo ;
Zhang, Chenhao ;
Shi, Luolin ;
Zhang, Tong ;
Zhao, Yan ;
Tour, James M. .
ACS APPLIED NANO MATERIALS, 2018, 1 (09) :5053-5061