Klein-Gordon oscillator in Kaluza-Klein theory

被引:128
作者
Carvalho, Josevi [1 ]
Carvalho, Alexandre M. de M. [2 ]
Cavalcante, Everton [3 ,4 ]
Furtado, Claudio [5 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Tecnol Alimentos, Ctr Ciencias & Tecnol Agroalimentar, BR-58840000 Pombal, PB, Brazil
[2] Univ Fed Alagoas, Inst Fis, Campus AC Simoes Ave Lourival Melo Mota S-N, BR-57072970 Maceio, AL, Brazil
[3] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil
[4] Univ Fed Paraiba, Ctr Ciencias Exatas & Sociais Aplicadas, Patos de Minas, PB, Brazil
[5] Univ Fed Paraiba, Dept Fis, CCEN, Cidade Univ, BR-58051970 Joao Pessoa, Paraiba, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2016年 / 76卷 / 07期
关键词
POSITION-DEPENDENT MASS; 2D DIRAC OSCILLATOR; SCHRODINGER-EQUATION; GRAVITATIONAL-FIELD; ENERGY-SPECTRUM; LIQUID-CRYSTAL; LANDAU-LEVELS; EDGE STATES; SPACE; PARTICLES;
D O I
10.1140/epjc/s10052-016-4189-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this contribution we study the Klein-Gordon oscillator on the curved background within the Kaluza-Klein theory. The problem of the interaction between particles coupled harmonically with topological defects in Kaluza-Klein theory is studied. We consider a series of topological defects, then we treat the Klein-Gordon oscillator coupled to this background, and we find the energy levels and corresponding eigenfunctions in these cases. We show that the energy levels depend on the global parameters characterizing these spacetimes. We also investigate a quantum particle described by the Klein-Gordon oscillator interacting with a cosmic dislocation in Som-Raychaudhuri spacetime in the presence of homogeneous magnetic field in a Kaluza-Klein theory. In this case, the energy spectrum is determined, and we observe that these energy levels represent themselves as the sum of the terms related with Aharonov-Bohm flux and of the parameter associated to the rotation of the spacetime.
引用
收藏
页数:9
相关论文
共 70 条
[1]   Solution of the Dirac equation with position-dependent mass in the Coulomb field [J].
Alhaidari, AD .
PHYSICS LETTERS A, 2004, 322 (1-2) :72-77
[2]  
Alhaidari AD, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.042116
[3]   On the κ-Dirac oscillator revisited [J].
Andrade, F. M. ;
Silva, E. O. ;
Ferreira, M. M., Jr. ;
Rodrigues, E. C. .
PHYSICS LETTERS B, 2014, 731 :327-330
[4]   Effects of spin on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background [J].
Andrade, Fabiano M. ;
Silva, Edilberto O. .
EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (12) :1-8
[5]   The 2D κ-Dirac oscillator [J].
Andrade, Fabiano M. ;
Silva, Edilberto O. .
PHYSICS LETTERS B, 2014, 738 :44-47
[6]   Remarks on the Dirac oscillator in (2+1) dimensions [J].
Andrade, Fabiano M. ;
Silva, Edilberto O. .
EPL, 2014, 108 (03)
[7]   Topological Aharonov-Bohm effect around a disclination [J].
Azevedo, S ;
Moraes, F .
PHYSICS LETTERS A, 1998, 246 (3-4) :374-376
[8]   Kaluza-Klein and Gauss-Bonnet cosmic strings [J].
AzregAinou, M ;
Clement, G .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (10) :2635-2650
[9]   Exact Solutions of the Mass-Dependent Klein-Gordon Equation with the Vector Quark-Antiquark Interaction and Harmonic Oscillator Potential [J].
Bahar, M. K. ;
Yasuk, F. .
ADVANCES IN HIGH ENERGY PHYSICS, 2013, 2013
[10]   On the Klein-Gordon oscillator subject to a Coulomb-type potential [J].
Bakke, K. ;
Furtado, C. .
ANNALS OF PHYSICS, 2015, 355 :48-54