Existence of nonoscillatory solutions to neutral dynamic equations on time scales

被引:66
作者
Zhu, Zhi-Qiang
Wang, Qi-Ru [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Polytech Univ, Dept Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
neatral dynamic equations; time scales; nonoscillatory solutions; existence;
D O I
10.1016/j.jmaa.2007.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give an analogue of the Arzela-Ascoli theorem on time scales. Then, we establish the existence of nonoscillatory solutions to the neutral dynamic equation [x(t) + p(t)x(g(t))](Delta) + f (t, x (h (t))) = 0 on a time scale. To dwell upon the importance of our results, three interesting examples are also included. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:751 / 762
页数:12
相关论文
共 10 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[3]  
Chen Y., 1992, FUNKC EKVACIOJ-SER I, V35, P557
[4]   Kamenev-type and interval oscillation criteria for second-order linear differential equations on a measure chain [J].
Del Medico, A ;
Kong, QK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (02) :621-643
[5]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714
[6]   Oscillation criteria for second-order matrix dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :169-185
[7]  
Kelley W.G., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]   Oscillation for neutral dynamic functional equations on time scales [J].
Mathsen, RM ;
Wang, QR ;
Wu, HW .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (07) :651-659
[9]   Oscillation of nonlinear dynamic equations on time scales [J].
Saker, SH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) :81-91
[10]   Frequency measures on time scales with applications [J].
Zhu, Zhi-Qiang ;
Wang, Qi-Ru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 319 (02) :398-409