共 50 条
Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs)
被引:22
作者:
Lis-Bartos, Anna
[1
,2
]
Smieszek, Agnieszka
[2
]
Franczyk, Kinga
[3
]
Marycz, Krzysztof
[2
,4
]
机构:
[1] AGH Univ Sci & Technol, Fac Mat Sci & Sci & Ceram, Dept Biomat & Composites, PL-30059 Krakow, Poland
[2] Wroclaw Univ Environm & Life Sci, Dept Expt Biol, PL-50375 Wroclaw, Poland
[3] AGH Univ Sci & Technol, Fac Elect Engn Automat Comp Sci & Biomed Engn, PL-30059 Krakow, Poland
[4] Justus Liebig Univ, Equine Clin Equine Surg, Fac Vet Med, D-35392 Giessen, Germany
来源:
POLYMERS
|
2018年
/
10卷
/
10期
关键词:
thermoplastic polyurethane;
poly(lactic acid);
polymer blends;
stem cells;
osteochondral tissue engineering;
REGENERATIVE MEDICINE;
OXIDATIVE STRESS;
PROGENITOR CELLS;
TISSUE;
BIOMATERIALS;
SCAFFOLDS;
SENESCENCE;
POLYMERS;
D O I:
10.3390/polym10101073
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Thermoplastic polyurethane (TPU) and poly(lactic acid) are types of biocompatible and degradable synthetic polymers required for biomedical applications. Physically blended (TPU+PLA) tissue engineering matrices were produced via solvent casting technique. The following types of polymer blend were prepared: (TPU+PLA) 7:3, (TPU+PLA) 6:4, (TPU+PLA) 4:6, and (TPU+PLA) 3:7. Various methods were employed to characterize the properties of these polymers: surface properties such as morphology (scanning electron microscopy), wettability (goniometry), and roughness (profilometric analysis). Analyses of hydrophilic and hydrophobic properties, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) of the obtained polymer blends were conducted. Tensile tests demonstrated that the blends exhibited a wide range of mechanical properties. Cytotoxicity of polymers was tested using human multipotent stromal cells derived from adipose tissue (hASC). In vitro assays revealed that (TPU+PLA) 3:7 matrices were the most cytocompatible biomaterials. Cells cultured on (TPU+PLA) 3:7 had proper morphology, growth pattern, and were distinguished by increased proliferative and metabolic activity. Additionally, it appeared that (TPU+PLA) 3:7 biomaterials showed antiapoptotic properties. hASC cultured on these matrices had reduced expression of Bax-alpha and increased expression of Bcl-2. This study demonstrated the feasibility of producing a biocompatible scaffold form based on (TPU+PLA) blends that have potential to be applied in tissue engineering.
引用
收藏
页数:14
相关论文